
Robotics and Autonomous Systems - Air
(RAS-A) MAVLink Control Link Interoperability

Profile (IOP)

Release Version 1.2

RAS-A MAVLink Control Link Interoperability Profile (IOP) for development of the
Department of Defense (DOD) small unmanned aircraft systems (sUAS) Joint
Reference Architecture (JRA)

19 MAY 2023

Distribution A: Approved for Public Release

1

RAS-A IOP

Document
This document describes the interoperability profile for air vehicles and is ap-
proved for public release.
Standards Release Timeline

Phase Dates Standards Version
V 1 DRAFT 2021-07-30 Initial working group draft
V 1 Review 2021-08-02 -

2021-08-27
Initial draft review

V 1 Release 2021-09-28 1.0
V 1.1 DRAFT 2022-06-24 1.1 initial draft
V 1.1 Review 2022-06-24 -

2022-08-04
1.1 draft review

V 1.1 Release 2022-08-05 1.1
V 1.2 DRAFT 2023-03-24 1.2 initial draft
V 1.2 2023-05-19 1.2

Document Revision History

Version Date Changes
DoD
Reviewer

Industry
Editor

D0.1 2021-
07-30

Initial draft Capt Matthew
Borowski, DIU

Lorenz
Meier

D0.2 2021-
09-10

Draft release v1.0 Maj Matthew
Borowski, DIU

Lorenz
Meier

1.0 2021-
09-28

Final First Version Maj Matthew
Borowski, DIU

Lorenz
Meier

1.1 DRAFT 2022-
06-24

Draft release v1.1 Maj Matthew
Borowski, DIU

Nuno
Marques

1.1 DRAFT
(reviewed)

2022-
08-04

v1.1 draft (reviewed) Maj Matthew
Borowski, DIU

Nuno
Marques

1.1 2022-
08-05

Release v1.1 Changelog Maj Matthew
Borowski, DIU

Nuno
Marques

1.2 DRAFT 2023-
03-24

Draft release v1.2 Maj Matthew
Borowski, DIU

RAS-A Con-
sortium

1.2 2023-
05-19

Release v1.2 Changelog Maj Matthew
Borowski, DIU

RAS-A Con-
sortium

Document Approval

2

https://github.com/Dronecode/air-iop/blob/master/docs/CHANGELOG.md#11---2022-08-05
https://github.com/Dronecode/air-iop/blob/master/docs/CHANGELOG.md#12---2023-05-19

RAS-A IOP

Version Date DoD Approver
DoD Approver
Title

Dod Approver
Signature

1.0 2021-
09-28

Maj Matthew
Borowski, DIU

Program
Manager

« Signed »

1.1 2022-
08-25

Maj Matthew
Borowski, DIU

Program
Manager

« Signed »

1.2 2023-
06-02

Maj Matthew
Borowski, DIU

Program
Manager

Governance
The RAS-A MAVLink Control Link IOP is managed by the joint services and built
on top of the MAVLink industry standard. The MAVLink standard is governed by
the Dronecode Foundation.

• The RAS-A MAVLink Control Link IOP Release 1.0 is based on the MAVLink
upstream message definitions from 30 JUL 21.

• Release 1.1 is based on MAVLink upstream common dialect and ras_a di-
alect message definitions from 21 JUL 2022.

• Release 1.2 is based on MAVLink upstream common dialect and ras_a di-
alect message definitions from 19 MAY 2023. The latest MAVLink technical
message definitions as XML files for code generation of this interoperabil-
ity profile is hosted at this link: XML definition.

This IOP document is self-contained and includes all documentation to imple-
ment the standard. It is managed by the Joint Program Office. External links
are for reference only. Please refer to this PDF and for message sets and code
generation to the released XML file.
Message Set Revision History

Version Date Technical message set identifier (GIT hash)
D0.2 2021-07-30 B030a760e8c350aa078542036bd9e8f39a494ac1

(link)
1.0 2021-07-30 B030a760e8c350aa078542036bd9e8f39a494ac1

(link)
1.1 2022-07-21 1a755ab85813215f8c002858ff3fe2f5ba652f99 (link)
1.2
DRAFT

2023-03-24 af284e17b62d07bc087ddab7ca35fb7586b01dba
(link)

1.2 2023-05-19 67e4ebc74144246f292b8229798d7e4f7360ecd8
(link)

3

https://github.com/Dronecode/air-iop-definitions/blob/master/message_definitions/v1.0/ras_a.xml
https://github.com/Dronecode/air-iop-definitions/blob/b030a760e8c350aa078542036bd9e8f39a494ac1/message_definitions/v1.0/common.xml
https://github.com/Dronecode/air-iop-definitions/blob/b030a760e8c350aa078542036bd9e8f39a494ac1/message_definitions/v1.0/common.xml
https://github.com/Dronecode/air-iop-definitions/blob/1a755ab85813215f8c002858ff3fe2f5ba652f99/message_definitions/v1.0/ras_a.xml
https://github.com/Dronecode/air-iop-definitions/blob/1a755ab85813215f8c002858ff3fe2f5ba652f99/message_definitions/v1.0/ras_a.xml
https://github.com/Dronecode/air-iop-definitions/blob/67e4ebc74144246f292b8229798d7e4f7360ecd8/message_definitions/v1.0/ras_a.xml

CONTENTS RAS-A IOP

Contents
Scope 7
Purpose . 7
Document Overview . 7
Source Documents . 7

Government Documents . 7
Non Government Documents 8

Joint Reference Architecture 8

Introduction to MAVLink 10
Key Features . 11
Determining Protocol/Message Version 11
Version Handshaking . 12
Capabilities . 13
Versions and Signing . 14

Networking 14
Routing . 14
Connections . 15
Identification . 15

Packet Serialization 15
Packet Format . 16
Incompatibility Flags (MAVLink 2) 18
Compatibility Flags (MAVLink 2) . 18
Payload Format . 19

Field Reordering . 19
Empty-Byte Payload Truncation (MAVLink 2) 20
CRC_EXTRA Calculation . 20

Checksum . 22

Signing / Authentication 22
Frame Format . 22

Link IDs . 23
Signature . 23

Timestamp Handling . 24
Accepting Signed Packets . 25
Accepting Unsigned Packets . 25
Accepting Incorrectly Signed Packets 26
Secret Key Management . 26
Logging . 27

Packaging and Streaming Video and Metadata 27

4

CONTENTS RAS-A IOP

Overview . 27
Metadata . 28
Security . 28

Microservices 28
Datalink Pairing Protocol . 29

Introduction . 29
In-Band Pairing Flow . 30
Out-of-Band Pairing Flow . 46
Message/Enum Summary . 51
HEARTBEAT Broadcast Frequency 52
Connecting to a GCS or MAVLink API 53
Component Identity . 53

Generic Payload Attribute Protocol 54
Attribute Parameter Schema . 54
Example Generic Payload: Gimbal with Camera 56
Example Generic Payload: Parachute 57

Telemetry . 60
General requirements and recommendations 60

Manual Control Protocol . 61
Mapping Axes . 62
Mapping Buttons . 62
Alternatives . 63
Implementations . 63
Future Extensions . 64

Mission Protocol . 64
Mission Types . 65
Mission Items (MAVLink Commands) 65
Message/Enum Summary . 67
Deprecated Types: MISSION_ITEM 68
Frames & Positional Information 68
Param 5, 6 For Non-Positional Data 69
Operations . 70
Mission File Formats . 77
Mission Command Detail . 77
Plan File Format . 81

Parameter Protocol . 93
Message/Enum Summary . 93
Parameter Encoding . 94
Parameter Caching . 95
Multi-System and Multi-Component Support 95
Limitations . 96
Parameter Operations . 96
List of parameters . 101

Extended Parameter Protocol . 103

5

CONTENTS RAS-A IOP

Message/Enum Summary . 104
Parameter Encoding . 105
C Encoding/Decoding . 105
Parameter Caching . 107
Limitations . 107
Parameter Operations . 108

Command Protocol . 113
Message/Enum Summary . 113
Sequences . 114
Long Running Commands . 115
Commands to support . 118

Camera Protocol . 147
Camera Connection . 147
Basic Camera Operations . 148
Message/Enum Summary . 157

Gimbal Protocol v2 . 160
Introduction . 160
Concepts . 160
Implementation and Messages 163
Message/Command/Enum Summary 165
Sequences . 168
How to Implement the Gimbal Device Interface 170

Terrain Protocol . 172
Autopilot Terrain Map Request 172
GCS Terrain Tile Check . 175

Exploration Protocol . 176
Exploration task definition and configuration 176
Command definitions . 184

Vehicle dynamics, states and configuration 191
System modes . 192
Arming procedure . 194

Autonomy Engine 194

6

RAS-A IOP

Scope

Purpose
The document provides a full specification to enable interoperability between
ground control stations and different air vehicles, including models from dif-
ferent manufacturers and different types (rotary wing, fixed-wing, VTOL). The
capabilities covered by this profile include manual control of the vehicle, au-
tonomous missions (waypoints), payload control (cameras, cargo, etc), vehicle
specific skills, radio link configuration and pairing, vehicle setup and configura-
tion and maintenance.
As air vehicles operate in 3D space the underlying MAVLink protocol has been
shown to also operate successfully in more constrained 2D environments like
unmanned ground vehicles and unmanned surface vehicles.

Document Overview
This document provides detailed concepts, flow charts and descriptions for the
packet layer, the MAVLink microservices concept and authentication / signing.
The key services that are used throughout different profiles are the Command
microservice, Parameter microservice and the Mission transfer protocol.
Higher-level microservices are built on top of these communication services.
These include services like manual control through stick inputs or commands,
camera controls and uploading missions and geofences.
MAVLink allows for customization / extension through so-called dialects, sets of
messages that are supported in addition to the baseline message set. RAS-A
has its own dialect built on top of the development dialect, which also extends
the common set of messages. The use of the ras_a dialect allows to easily
extend the IOP with the requiredmessages that cannot be found in the common
MAVLink set. Consequently, this will facilitate the transition of the RAS-A set to
an upstream dialect, like common.
This document further covers the supported vehicle system modes and the
arming sequence.

Source Documents
Government Documents

7

RAS-A IOP

Table 5: Government Documents

ID Version Document
IOP- 4.0 JAUSProfilingRules-V4 4.0 RAS-G IOP JAUS Profiling Rules
IOP-OverarchingProfile- 4.0
V4

4.0 RAS-G IOP Overarching Profile

IOP- CommunicationsProfile-
V4

4.0 RAS-G IOP Communications
Profile

Non Government Documents

Table 6: Non Government Documents

ID Version Document
MAVLink standard 2.x http://mavlink.io/en/

Joint Reference Architecture
The RAS-A MAVLink Control Link Interoperability Profile (IOP) shall be used to
achieve interoperability between different vendors, leveraging the leading in-
dustry standard. The IOPs are separated, however, a minimum set is required
for the typical operational scenario of a government asset. The required ser-
vices are marked in the table below. All other services are supported by the
common ground control station, but are not mandatory on the vehicle side.
Options below can be either required (r), or optional (o).
These categories are defined as follows:

• If the system is implementing any similar functionality (for example has
a camera), it has to provide the specified interface and version as the
default option

• If flagged as required, then the interface has to be present at all times
• If flagged as not required, then the interface can be omitted if the vehicle
does not have any such capability.

What is explicitly not permitted is to omit an optional interface despite the
vehicle having such capability - e.g. if the vehicle has a camera, then the spec-
ified interface has to be provided. This is needed as the core objective of this
standard is to enable the integration of different systems into a common con-
trol interface and hence a single approach to every category of functionality is
required.

8

RAS-A IOP

Table 7: Required Services on Vehicle Side for
Reference Architecture

Task MAVLink service Purpose / usage Req.
Establishing
baseline
communica-
tion

Heartbeat/Connection
protocol and initial
handshaking
(AUTOPILOT_VERSION
and PROTOCOL_VERSION
messages)

Discovery and
identification of systems
on the network,
determine protocol
version and vehicle
capabilities

r

Datalink
pairing

Pairing protocol (v1
accepted as per IOP v1.1.
v2 to be supported and
required in the IOP v2)

Connect and setup
datalinks, and configure
encryption.

o

Get
telemetry
and status
information
from the
drone

Battery protocol and
discriminated messages
on the Telemetry section
of this IOP

Obtain information of
MAVLink components
and/or vehicle status

r

Control of
the drone by
the operator

Manual Control
protocol/microservice

Input coming from a
physical interface to the
operator (i.e. joystick).
Direct manual control of
the vehicle

r

Control of
the drone by
the operator

Command
protocol/microservice

Provides interface to an
operator (i.e. typically
from a UI). Note that the
list of required and
optional commands are
listed in this document

r

Control of a
camera on
the drone

Camera
protocol/microservice

Interacting with camera
such as starting /
stopping video recording,
change brightness or
zoom, downloading
images if the camera
provides this
functionality

o

Control of a
gimbal on
the drone

Gimbal (v2)
protocol/microservice
(v1.1 allowed as per IOP
v1.1, but to be
deprecated on IOP v1.2)

Orienting the camera
towards specific angles
or locations on the
ground

o

9

RAS-A IOP

Task MAVLink service Purpose / usage Req.
Uploading
and
executing
an
autonomous
mission

Mission
protocol/microservice

Uploading waypoints and
execute pre-planned or
on-the-fly updated
complex missions

r

Generic
payload
control

Command
protocol/microservice

Control generic payloads
as well as special
mission payloads (like
cargo). Note that the list
of required and optional
commands are listed in
this document

o

Terrain
following

Terrain Protocol Enabling the vehicle to
stay close to known
terrain during a mission

o

File transfer
(camera
definitions
or log files)

(MAVLink) File Transfer
Protocol

Enables file transfer over
MAVLink

o

Configure
drone
parameters

Parameter
microservice/protocol

Exchange configuration
settings between
MAVLink components,
including configuring the
vehicle from the common
GCS

r

Autonomous
behaviors:
Exploration

Exploration
protocol/microservice

Controls autonomous
exploration capability of
a vehicle

o

Introduction to MAVLink
MAVLink is a very lightweight messaging protocol for communicating with
drones (and between onboard drone components).
MAVLink follows a modern hybrid publish-subscribe and point-to-point design
pattern: Data streams are sent / published as topics while configuration sub-
protocols such as the Mission Protocol or Parameter Protocol are point-to-point
with retransmission.
Messages are defined within XML files. Each XML file defines the message set
supported by a particular MAVLink system, also referred to as a “dialect”. The

10

http://mavlink.io/en/messages/

Key Features RAS-A IOP

reference message set that is implemented by most ground control stations
and autopilots is defined in common.xml (most dialects build on top of this defi-
nition, including the ras_a.xml dialect itself).
Code generators create software libraries for specific programming languages
from these XMLmessage definitions, which can then be used by drones, ground
control stations, and other MAVLink systems to communicate. The generated
libraries are typically MIT-licensed, and can therefore be used without limits in
any closed-source application without publishing the source code of the closed-
source application.

Key Features
• Very efficient. MAVLink 1 has just 8 bytes overhead per packet, includ-
ing start sign and packet drop detection. MAVLink 2 has just 14 bytes of
overhead (but is a much more secure and extensible protocol). Because
MAVLink doesn’t require any additional framing it is very well suited for
applications with very limited communication bandwidth.

• Very reliable. MAVLink has been used since 2009 to communicate be-
tween many different vehicles, ground stations (and other nodes) over
varied and challenging communication channels (high latency/noise). It
provides methods for detecting packet drops, corruption, and for packet
authentication.

• Many different programming languages can be used, running on numer-
ous micro-controllers/operating systems (including ARM7, ATMega, dsPic,
STM32 and Windows, Linux, MacOS, Android and iOS).

• Allows up to 255 concurrent systems on the network (vehicles, ground
stations, etc.)

• Enables both off-board and onboard communications (e.g. between a GCS
and drone, and between drone autopilot and MAVLink enabled drone cam-
era).

Determining Protocol/Message Version
A library’s MAVLink support can be determined in a number of ways:

• AUTOPILOT_VERSION.capabilities can be checked against the MAV_PROTOCOL_
CAPABILITY_MAVLINK2 flag to verify MAVLink 2 support.

• PROTOCOL_VERSION.version contains the MAVLink version number multiplied
by 100: v1.0 is 100, v2.3 is 203 etc.

• HEARTBEAT.mavlink_version field contains the minor version number. This
is the <version> field defined in the Message Definitions (version in com-
mon.xml for dialects that depend on the common message set).

11

http://mavlink.io/en/messages/common.html
http://mavlink.io/en/getting_started/generate_libraries.html
http://mavlink.io/en/#supported_languages
http://mavlink.io/en/#supported_languages
https://mavlink.io/en/messages/common.html#AUTOPILOT_VERSION
https://mavlink.io/en/messages/common.html#MAV_PROTOCOL_CAPABILITY_MAVLINK2
https://mavlink.io/en/messages/common.html#MAV_PROTOCOL_CAPABILITY_MAVLINK2
https://mavlink.io/en/messages/common.html#PROTOCOL_VERSION
https://mavlink.io/en/messages/common.html#HEARTBEAT
http://mavlink.io/en/messages/
http://mavlink.io/en/messages/common.html
http://mavlink.io/en/messages/common.html

Version Handshaking RAS-A IOP

• The major version can be determined from the packet start marker byte:
∘ MAVLink 1: 0xFE
∘ MAVLink 2: 0xFD

• A MAVLink library that does not support a protocol version will not recog-
nize the protocol start marker; so no messages will even be detected (see
Serialization).

• While messages do not contain version information, an extra CRC is used
to ensure that a library will only process compatible messages (see Seri-
alization > CRC_EXTRA).

Note: MAVLink version 2 is the required supported version.

Version Handshaking
Support for MAVLink 2 is indicated in the AUTOPILOT_VERSION message by the
MAV_PROTOCOL_CAPABILITY_MAVLINK2 flag.
This is sufficient if the communication link between autopilot and GCS is com-
pletely transparent. However, most communication links are not completely
transparent as they either include routing or in case of fixed-length wireless
implementations on packetization. In order to also test the link, the MAVLink
2 handshake protocol sends a MAVLink 2 frame to test the complete communi-
cation chain.
To do so, the GCS sends a COMMAND_LONG or COMMAND_INT message with the com-
mand ID MAV_CMD_REQUEST_PROTOCOL_VERSION.
If the system supports MAVLink 2 and the handshake it will respond with
PROTOCOL_VERSION encoded as MAVLink 2 packet. If it does not support
MAVLink 2 it should NACK the command. The GCS should fall back to a timeout
in case the command interface is not implemented properly.
The diagram below illustrates the complete sequence.
Note: Both AUTOPILOT_VERSION and PROTOCOL_VERSION are manda-
tory to be sent on request through MAV_CMD_REQUEST_MESSAGE.
Semi-Transparent Legacy Radios
Some popular legacy radios (e.g. the SiK radio series) operate in semi-
transparent mode by injecting RADIO_STATUS messages into the MAVLink
message stream. Per MAVLink spec these should actually emit a heartbeat
with a different component ID than the autopilot to be discoverable. However,
an additional heartbeat could be an issue for deployed systems. Therefore
these radios can alternatively confirm their MAVLink 2 compliance by emitting
RADIO_STATUS in v2 message format after receiving the first MAVLink v2 frame.

12

http://mavlink.io/en/guide/serialization.html
http://mavlink.io/en/guide/serialization.html
http://mavlink.io/en/guide/serialization.html
https://mavlink.io/en/messages/common.html#AUTOPILOT_VERSION
https://mavlink.io/en/messages/common.html#MAV_PROTOCOL_CAPABILITY_MAVLINK2
https://mavlink.io/en/messages/common.html#COMMAND_LONG
https://mavlink.io/en/messages/common.html#COMMAND_INT
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_PROTOCOL_VERSION
https://mavlink.io/en/messages/common.html#PROTOCOL_VERSION
https://mavlink.io/en/messages/common.html#RADIO_STATUS

Capabilities RAS-A IOP

Figure 1: Mermaid sequence: Request protocol version

Capabilities
Vehicle capabilities should be reported through the capabilities field in the
AUTOPILOT_VERSION, using the MAV_PROTOCOL_CAPABILITY_MAVLINK2 flag. Reporting
capabilities allows the GCS to adjust the configurations and UI according to
what the vehicle is capable of executing.
The following capabilities are mandatory to exist and should be reported:

• MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT
• MAV_PROTOCOL_CAPABILITY_MISSION_INT
• MAV_PROTOCOL_CAPABILITY_COMMAND_INT
• MAV_PROTOCOL_CAPABILITY_PARAM_ENCODE_BYTEWISE
• MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION
• MAV_PROTOCOL_CAPABILITY_MAVLINK2
• MAV_PROTOCOL_CAPABILITY_PARAM_ENCODE_C_CAST

Other capability flags made available in the RAS-A dialect are mandatory to be
exposed when the vehicle/autopilot offers that same capability.
Note: Under this IOP, the current existing capabilities can be ex-
tended, and added under the ras_a dialect.

13

https://mavlink.io/en/messages/common.html#AUTOPILOT_VERSION
https://mavlink.io/en/messages/common.html#MAV_PROTOCOL_CAPABILITY_MAVLINK2

Versions and Signing RAS-A IOP

Versions and Signing
Packet signing is optional as encryption is already provided through pairing
on the DoD-selected datalink. It can however provide an additional layer of
operational safety.
Currently most MAVLink networks are configured to use unsigned MAVLink 2
messages.

Networking
RAS-A is expected to run on an IP network. RAS-A messages are encoded into
UDP datagrams and sent over IP networks to their destination.
Specifically, a RAS-A capable device shall - Utilize Internet Protocol (IP) for rout-
ing and networking - Utilize a MAC address - Utilize an IPv4 IP address - Utilize
ports - Utilize UDP to transport MAVLink v2 encoded messages

Routing
All bidirectional GCS to vehicle communication happens over the IP routing
protocol. The system ID fields in the messages lose their meaning, as they are
not used for routing. This does not make any assumptions about the physical
layer.
Routing is done using the IP routing rules, all existing standard software and
hardware components for IP, (routers, IP tables etc.) can be used to set up the
network. The network has to be set up in a way, that participants that want to
establish a communication, can reach the participants they want to establish a
communication with by their IP. This is analogous to a server <> client model,
where the client has to be able to reach the server by its IP address. In case
the client sits behind a NAT, the server does not need to be able to reach the
client, as the client initiates the communication.
In RAS-A, the concept a broadcast message (e.g. a telemetry) message is sup-
posed to be sent to all active connections that a system have. This is in con-
trast to MAVLink, where the message is supposed to be sent as broadcast on
the local network segment. In that sense, RAS-A does not use broadcast, but
multi-unicast.
In RAS-A, each message that arrives at a certain participant is intended for that
participant. No RAS-A participant shall route messages to other participants.
This falls into the sole responsibility of the IP routing protocol.

14

Connections RAS-A IOP

Connections
A “RAS-A connection” is defined as two network participants who send each
other HEARTBEAT (message ID 0) messages. HEARTBEAT is expected to be sent at
a rate of 1Hz. Should one of the participant not receive 5 consecutive heartbeat
messages, the connection is considered broken and needs to be re-established.
The RAS-A connection gets established after the RAS-A pairing process. The
pairing process is the lower level network configuration process that assigns IP
addresses and network configuration to the nodes. The RAS-A connection gets
established, as soon as the lower level pairing protocol notifies the presence
of devices.
A connection can be established from either the GCS or the vehicle. To estab-
lish a connection, the participant starts sending the heartbeat messages to
well known port 14550 of the connection target. Each participant is expected
to host a listening socket at well-known port 14550 and accept incoming heart-
beat messages on that port as connection establishment.

Identification
A participant is reachable by its IP address and a port. Packets get routed by
IP routing rules to the correct participant. All communication follows a client
<> server model. The client establishes the communication by sending data
to a well-known port of the server. The client may use any ephemeral port for
this outgoing communication. The server will respond to this same port. In the
case there is a NAT active in the network, the [IP, Port] tuple may only be a
local identifier for the participant, but not a global identifier.
The RAS-A header is not modified, the system ID field is still present, filled
out and transmitted. However, its value is no longer considered to hold any
meaning. System ID collisions are expected to happen and are ignored.
Example: A GCS is connected to two drones at the same time. Both drones
report system id 1, the GCS reports system id 254. From GCS perspective, the
two drones have different (IP port) pairs by which the GCS identifies them. The
fact that they have the same system id is ignored.

Packet Serialization
This topic provides detailed information about about MAVLink packet serializa-
tion, including the over-the-wire formats for MAVLink v1 and v2 packets, the
ordering of fields in the message payload, and the CRC_EXTRA used for ensur-
ing that the sender and receiver share a compatible message definition.

15

Packet Format RAS-A IOP

It is primarily intended for developers who are creating/maintaining a MAVLink
generator
MAVLink users do not typically need to understand the serialization format, as
encoding/decoding is handled by the MAVLink libraries.

Packet Format
This section shows the serialized message format of MAVLink packets (the for-
mat is inspired by the CAN and SAE AS-4 standards).
MAVLink 2 Packet Format
Below is the over-the-wire format for a MAVLink 2 packet (the in-memory rep-
resentation might differ).

Figure 2: Over-the-wire MAVLink 2 Format Frame

Byte
Index C version Content Value Explanation
0 uint8_t

magic
Packet start
marker

0xFD Protocol-specific
start-of-text (STX)
marker used to indicate
the beginning of a new
packet. Any system that
does not understand
the protocol version will
skip the packet.

1 uint8_t len Payload
length

0 - 255 Indicates length of the
following payload
section. This may be
affected by payload
truncation.

2 uint8_t
incompat_
flags

Incompatibility
Flags

Flags that must be
understood for MAVLink
compatibility
(implementation
discards packet if it
does not understand
flag).

16

https://en.wikipedia.org/wiki/CAN_bus
http://mavlink.io/en/guide/mavlink_2.html
http://mavlink.io/en/guide/serialization.html#payload_truncation
http://mavlink.io/en/guide/serialization.html#payload_truncation
http://mavlink.io/en/guide/serialization.html#incompat_flags
http://mavlink.io/en/guide/serialization.html#incompat_flags

Packet Format RAS-A IOP

Byte
Index C version Content Value Explanation
3 uint8_t

compat_
flags

Compatibility
Flags

Flags that can be
ignored if not
understood
(implementation can
still handle packet even
if it does not
understand flag).

4 uint8_t seq Packet
sequence
number

0 - 255 Used to detect packet
loss. Components
increment value for
each message sent.

5 uint8_t
sysid

System ID
(sender)

1 - 255 Deprecated - Byte does
not hold any meaning

6 uint8_t
compid

Component
ID (sender)

1 - 255 ID of component
sending the message.
Unqiue values within a
system used for routing
and topological
purposes. Historically
used to differentiate
components in a system
(e.g. autopilot and a
camera) using
appropriate values in
MAV_COMPONENT. Note that
the broadcast address
MAV_COMP_ID_ALL may not
be used in this field as it
is an invalid source
address.

7 to 9 uint32_t
msgid:24

Message ID
(low,
middle,
high bytes)

0 -
16777215

ID of message type in
payload. Used to
decode data back into
message object.

n-byte
payload

uint8_t
payload
[max 255]

Payload Message data. Depends
on message type
(i.e. Message ID) and
contents. Byte index:
n=0: NA, n=1: 10,
n>=2: 10 to (9+n)

17

http://mavlink.io/en/guide/serialization.html#compat_flags
http://mavlink.io/en/guide/serialization.html#compat_flags
https://mavlink.io/en/messages/common.html#MAV_COMPONENT
http://mavlink.io/en/guide/serialization.html#payload

Incompatibility Flags (MAVLink 2) RAS-A IOP

Byte
Index C version Content Value Explanation
(n+10)
to
(n+11)

uint16_t
checksum

Checksum
(low byte,
high byte)

CRC-16/MCRF4XX for
message (excluding
magic byte). Includes
CRC_EXTRA byte.

(n+12)
to
(n+25)

uint8_t
signature[13]

Signature (Optional) Signature to
ensure the link is
tamper-proof.

Table 6: Over-the-wire MAVLink 2 Format
The minimum packet length is 12 bytes for acknowledgement packets without
payload. And the maximum 280 bytes for a signed message that uses the
whole payload.

Incompatibility Flags (MAVLink 2)
Incompatibility flags are used to indicate features that a MAVLink library must
support in order to be able to handle the packet. This includes any feature that
affects the packet format/ordering.
A MAVLink implementation must discard a packet if it does not understand any
flag in the incompat_flags field.
Supported incompatibility flags include (at time of writing):

Table 9: Supported Incompatibility Flags

Flag C flag Feature
0x01 MAVLINK_IFLAG_

SIGNED
The packet is signed (a signature has been
appended to the packet).

Compatibility Flags (MAVLink 2)
Compatibility flags are used to indicate features that won’t prevent a MAVLink
library from handling the packet (even if the feature is not understood). This
might include, for example, a flag to indicate that a packet should be treated
as “high priority” (such a message could be handled by any MAVLink imple-
mentation because packet format and structure is not affected).
A MAVLink implementation can safely ignore flags it doesn’t understand in the
compat_flags field.

18

http://mavlink.io/en/guide/serialization.html#checksum
http://mavlink.io/en/guide/serialization.html#crc_extra
http://mavlink.io/en/guide/message_signing.html
http://mavlink.io/en/guide/message_signing.html

Payload Format RAS-A IOP

Payload Format
MAVLink does not include information about the message structure in the pay-
load itself (in order to reduce overhead)! Instead the sender and receiver must
share a common understanding of the meaning, order and size of message
fields in the over-the-wire format.
Messages are encoded within the MAVLink packet:

• The msgid (message id) field identifies the specific message encoded in
the packet.

• The payload field contains the message data.
∘ MAVLink reorders the message fields in the payload for over-the-wire
transmission (from the order in the original XML Message Definitions).

∘ MAVLink 2 truncates any zero-filled bytes at the end of the payload
before the message is sent and sets the packet len field appropriately
(MAVLink 1 always sends all bytes).

• The len field contains the length of the payload data.
• A CRC_EXTRA byte is added to the message checksum. A receiver can
use this to confirm that it is compatible with the payload message for-
mat/definition. A MAVLink library should notify a bad CRC during decod-
ing if a message specification is incompatible (e.g. the C library mavlink_
parse_char() gives a status MAVLINK_FRAMING_BAD_CRC).

Field Reordering

Message payload fields are reordered for transmission as follows:
• Fields are sorted according to their native data size:

∘ (u)int64_t, double (8 bytes)
∘ (u)int32_t, float (4)
∘ (u)int16_t (2)
∘ (u)int8_t, char (1)

• If two fields have the same length, their order is preserved as it was
present before the data field size ordering

• Arrays are handled based on the data type they use, not based on the
total array size

• The over-the-air order is the same as for the struct and thus represents
the reordered fields

• The CRC_EXTRA field is calculated after the reordering, to ensure that a mis-
take during field reordering will be caught by a faulty CRC. The provided

19

http://mavlink.io/en/guide/serialization.html#field_reordering
http://mavlink.io/en/messages/
http://mavlink.io/en/guide/mavlink_2.html#packet_truncation
http://mavlink.io/en/guide/serialization.html#crc_extra
http://mavlink.io/en/guide/serialization.html#checksum
http://mavlink.io/en/getting_started/use_libraries.html#receiving
http://mavlink.io/en/getting_started/use_libraries.html#receiving

Payload Format RAS-A IOP

Python, C and C# reference implementations are tested to have the cor-
rect field reordering, this is only a concern for custom implementations.

The only exception to the above reordering is for MAVLink 2 extension fields.
Extension fields are sent in XML-declaration order and are not included in the
CRC_EXTRA calculation. This allows new extension fields to be appended to the
end of a message without breaking binary compatibility.
This ordering is unique and can be easily implemented in a protocol generator
by using a stable sorting algorithm. The alternative to using sorting would be
either to use inefficient alignment, which is bad for the target architectures for
typical MAVLink applications, or to have function calls in the order of the vari-
able size instead of the application context. This would lead to very confusing
function signatures of serialization functions.

Empty-Byte Payload Truncation (MAVLink 2)

MAVLink 2 truncates any empty (zero-filled) bytes at the end of the serialized
payload before it is sent. This contrasts with MAVLink 1, where bytes were sent
for all fields regardless of content.
The actual fields affected/bytes saved depends on the message and its content
(MAVLink field reordering means that all we can say is that any truncated fields
will typically be those with the smallest data size, or extension fields).
The first byte of the payload is never truncated, even if the payload consists
entirely of zeros.
The protocol only truncates empty bytes at the end of the serialized message
payload; any null bytes/empty fields within the body of the payload are not
affected.

CRC_EXTRA Calculation

The CRC_EXTRA CRC is used to verify that the sender and receiver have a
shared understanding of the over-the-wire format of a particular message.
Changes in message specifications that might make the over-the-wire format
incompatible include: new/removed fields, or changes to field name, data type,
order, or array length.
When the MAVLink code generator runs, it takes a checksum of the XML struc-
ture for each message and creates an array defining MAVLINK_MESSAGE_CRCS. This
is used to initialize the mavlink_message_crcs[] array in the C/C++ implemen-
tation, and is similarly used in the Python (or any other, such as the C# and
JavaScript) implementation.

20

http://mavlink.io/en/guide/define_xml_element.html#message_extensions
http://mavlink.io/en/guide/serialization.html#crc_extra
http://mavlink.io/en/guide/serialization.html#field_reordering
http://mavlink.io/en/messages/

Payload Format RAS-A IOP

When the sender calculates the checksum for a message it adds the CRC_EXTRA
byte onto the end of the data that the checksum is calculated over. The re-
cipient calculates a checksum for the received message and adds its own CRC_
EXTRA for the particular message id. If the CRC_EXTRA for the sender and receiver
are different the checksums will not match.
This approach ensures that only messages where the sender and recipient are
using the same message structure will be decoded (or at least it makes a mis-
take much more unlikely, as for any checksum application).
If you are doing your own implementation of MAVLink you can get this check-
sum in one of two ways: you can include the generated headers and use
MAVLINK_MESSAGE_CRCS to get the right seed for each message type, or you can
re-implement the code that calculates the seed.
As MAVLink internally reorders the message fields according to their size
to prevent word / half-word alignment issues (see data structure alignment
(Wikipedia) for further reference), and a wrongly implemented reordering
potentially can cause inconsistencies as well, the CRC_EXTRA is calculated based
on the over-the-air message layout rather than the XML order.
MAVLink 2 extension fields are not included in the CRC_EXTRA calculation.
This is the Python code that calculates the CRC_EXTRA seed:
def message_checksum(msg):

'''calculate a 8-bit checksum of the key fields of a
message, so we can detect incompatible XML changes'''

from .mavcrc import x25crc
crc = x25crc()
crc.accumulate_str(msg.name + ' ')
in order to allow for extensions the crc does not include
any field extensions
crc_end = msg.base_fields()
for i in range(crc_end):

f = msg.ordered_fields[i]
crc.accumulate_str(f.type + ' ')
crc.accumulate_str(f.name + ' ')
if f.array_length:

crc.accumulate([f.array_length])
return (crc.crc&0xFF) ^ (crc.crc>>8)

Graph 4: Python Code for CRC_EXTRA Calculation
This uses the same CRC-16/MCRF4XX checksum that is used at runtime. It
calculates a CRC over the message name (such as “RAW_IMU”) followed by the
type and name of each field, space separated. The order of the fields is the
order they are sent over the wire. For arrays, the array length is also added.

21

http://en.wikipedia.org/wiki/Data%20structure%20alignment
http://mavlink.io/en/guide/define_xml_element.html#message_extensions

Checksum RAS-A IOP

Checksum
The packet format includes a 2-byte CRC-16/MCRF4XX to allow detection of
message corruption. See the MAVLink source code for the documented C-
implementation.
The CRC covers the whole message, excluding magic byte and the signature (if
present). The CRC includes the CRC_EXTRA byte, which is used to ensure that the
sending and receiving systems share a common understanding of the message
definition.

Signing / Authentication
MAVLink 2 adds support for message signing, which allows a MAVLink system
to verify that messages originate from a trusted source. However, some DoD
datalinks are already complying with the pairing protocol that already includes
and enables AES256 encryption, so signing and authentication is optional under
this IOP.
This topic provides a general overview of message signing, which will be use-
ful both for developers using existing MAVLink libraries and for writers of new
MAVLink code generators. It explains how a system can determine if a message
is signed and whether the signature is valid, how to allow unsigned messages
to be accepted, and how to create and share the secret used to create the
signature.
More detailed information for developers using existing MAVLink libraries can
be found here:

• C Message Signing (mavgen)
• Pymavlink Message Signing (mavgen)

Frame Format
For a signed packet the 0x01 bit of the incompatibility flag field is set true and
an additional 13 bytes of “signature” data appended to the packet. The signed
packet format is shown below.

Figure 3: MAVLink 2 Signed Packet Format

The incompatibility flags in the packet header are used to indicate that the
MAVLink library must reject the packet if it does not understand or cannot han-
dle the flag. In other words, a MAVLink library that does not support signing

22

https://github.com/mavlink/c_library_v2/blob/master/checksum.h
https://github.com/mavlink/c_library_v2/blob/master/checksum.h
http://mavlink.io/en/guide/serialization.html#crc_extra
http://mavlink.io/en/guide/mavlink_2.html
http://mavlink.io/en/mavgen_c/message_signing_c.html
http://mavlink.io/en/mavgen_python/#message_signing
http://mavlink.io/en/guide/mavlink_2.html#incompat_flags
http://mavlink.io/en/guide/mavlink_2.html#incompat_flags

Frame Format RAS-A IOP

must drop signed packets. The C library uses MAVLINK_IFLAG_SIGNED to represent
the “supports message signing” bit.
The 13 bytes of the signature are:

Table 10: 13 Bytes Signature Description

Data Description
linkID (8 bits) ID of link on which packet is sent. Normally this is

the same as the channel.
timestamp (48 bits) Timestamp in 10 microsecond units since 1st January

2015 GMT time. This must monotonically increase
for every message on a particular link. Note that
means the timestamp may get ahead of the actual
time if the packet rate averages more than 100,000
packets per second.

signature (48 bits) A 48 bit signature for the packet, based on the
complete packet, timestamp, and secret key.

See below for more information about the fields.

Link IDs

The 8 bit link ID is provided to ensure that the signature system is robust for
multi-link MAVLink systems. Each implementation should assign a link ID to
each of the MAVLink communication channels it has enabled and should put
this ID in the link ID field. The link ID is especially important where theremay be
a significant latency difference between different links (such as WiFi combined
with a telemetry radio).
The monotonically increasing timestamp rule is applied separately for each
logical stream, where a stream is defined by the tuple:
(SystemID,ComponentID,LinkID)
For more information see C Message Signing > Handling Link IDs.

Signature

The 48 bit (6 byte) signature is the first 48 bits of a SHA-256 hash of the com-
plete packet (without the signature, but including the timestamp) appended to
the secret key. The secret key is 32 bytes of binary data stored on both ends
of a MAVLink channel (i.e. an autopilot and a ground station or MAVLink API).

23

https://mavlink.io/en/guide/mavlink_2.html#MAVLINK_IFLAG_SIGNED
http://mavlink.io/en/guide/message_signing.html#link_ids
http://mavlink.io/en/guide/message_signing.html#timestamps
http://mavlink.io/en/guide/message_signing.html#link_ids
http://mavlink.io/en/guide/message_signing.html#signature
http://mavlink.io/en/guide/message_signing.html#timestamp
http://mavlink.io/en/mavgen_c/message_signing_c.html#handling_link_ids
http://mavlink.io/en/guide/message_signing.html#secret_key

Timestamp Handling RAS-A IOP

This is shown below, where + represents concatenation and sha256_48() is a
sha256 implementation which returns the first 48 bits of the normal sha256
output:
signature = sha256_48(secret_key + header + payload + CRC + link-ID + timestamp)

Timestamp Handling
The timestamp is a 48 bit number with units of 10 microseconds since 1st
January 2015 GMT. For systems where the time since 1/1/1970 is available (the
unix epoch) you can use an offset in seconds of 1420070400.
This is a loose definition, as the various updatemechanisms detailed belowmay
result in the timestamp being significantly different from actual GMT time.
All timestamps generated must be at least 1 more than the previous timestamp
sent in the same session for the same link/(SystemID, ComponentID, LinkID)
tuple. The timestamp may get ahead of GMT time if there is a burst of packets
at a rate of more than 100 thousand packets per second.
A MAVLink-enabled device may not know the current GMT time, for example
if it does not have a reliable time source, or if it has just booted and not yet
obtained the time from GPS or some other system.
Systems should implement the following rules to obtain a reliable timestamp:

• The current timestamp should be stored regularly in persistent storage
(ideally at least once a minute)

• The timestamp used on startup should be the maximum of the timestamp
implied by the system clock and the stored timestamp

• If the system does not have an RTC mechanism then it should update its
timestamp when GPS lock is achieved. The maximum of the timestamp
from the GPS and the stored timestamp should be used.

• The timestamp should be incremented by one on each message sent from
a particular link.

• When a correctly signed message is decoded the timestamp should be
replaced by the timestamp of the incoming message if that timestamp is
greater than the current timestamp. The link timestamp must never be
updated with the timestamp from an incorrectly signed packet (even if
these are being accepted).

• The timestamp on incoming signed messages should be checked against
the previous timestamp for the incoming (linkID,srcSystem,SrcComponent)
tuple and the message rejected if it is smaller.

24

http://mavlink.io/en/guide/message_signing.html#accepting_incorrectly_signed_packets

Accepting Signed Packets RAS-A IOP

• If there is no previousmessagewith the given (linkID,srcSystem,SrcComponent)
then the timestamp should be accepted if it is not more than 6 million
(one minute) behind the current timestamp.

For devices that store the timestamp in persistent storage, implementations
can prevent race conditions by storing two timestamp values. On Write the
smaller of the two values should be updated. On read the larger of the two
values should be used.

Accepting Signed Packets
When a signed packet arrives it should be discarded if the:

• Timestamp is older than the previous packet from the same logical stream -
where a logical stream is defined as the sequence of MAVLink packets with
the same (SystemID, ComponentID, LinkID) tuple.

• Computed 48 bit signature does not match the signature included in the
packet.

• The timestamp is more than 1 minute (6,000,000) behind the local sys-
tem’s timestamp.

Accepting Unsigned Packets
MAVLink libraries should provide a mechanism that allows a system to condi-
tionally accept unsigned packets.
The rules for accepting these packets will be implementation specific, but could
be based on a combination of a parameter setting, transport type, message
type, (in)compatibility flags etc.
All packets that do not meet the system-specific unsigned packet accep-
tance rules must be rejected (otherwise there is no benefit gained from
signing/authentication).
Some suggestions for when to accept unsigned packets:

• Accept all unsigned packets based on a system-specific parameter.
• Accept all unsigned packets if the connection is over a “secure channel”
(e.g. local USB cable or local wired Ethernet cable).

• RADIO_STATUS packets are always accepted without signing (to make life
easier for telemetry radios).

• Accept all unsigned packets when in an “unsigned mode” (perhaps trig-
gered by a hardware button pressed on boot).

• Accept all unsigned packets until a signed packet is received (uncondition-
ally), then move to the more restricted signing rules above.

25

Accepting Incorrectly Signed Packets RAS-A IOP

Accepting Incorrectly Signed Packets
MAVLink libraries should provide a mechanism that allows a system to condi-
tionally accept incorrectly signed packets.
This feature might be useful for finding a lost vehicle with a corrupted secret
key (the GCS could choose to still display position information, albeit ideally
with a different “untrusted” icon).
A system that is accepting incorrectly signed packets should provide a highly
conspicuous indication that the connection is unsafe/insecure. Malformed
signed packets indicate a bad configuration, transport failure, protocol failure,
or hostile manipulation.

Secret Key Management
A secret key is 32 bytes of binary data that are used to create message signa-
tures that can be verified by other holders of the key. The key should be created
on one system in the network (often a GCS) and shared to other trusted devices
via secure channels. Systems must have a shared key in order to be able to
communicate.
The mavgen C and Python libraries support only one key per link. This is a choice
of the library and not a limit/requirement of the protocol. An implementation
might instead store a pool of keys, and/or manage keys on a per-connection
basis.
The secret key should be stored in persistent storage, and must not be exposed
via any publicly accessible communication protocol. In particular, the key must
not be exposed in MAVLink parameters, MAVLink log files or dataflash log files
that may be used for public log analysis.
The method of generating the secret key is implementation dependent. For
example, it could be generated by:

• A user-entered string that is then run through SHA-256.
• A random key generator.

The secret keymay be shared to other devices using the SETUP_SIGNINGmessage.
The message should only ever be sent over a secure link (e.g. USB or wired
Ethernet) as a directmessage to each connected system_id/component_id. The
receiving systemmust be set up to process the message and store the received
secret key to the appropriate permanent storage.
The same secure method can be used to both set and reset a system’s key
(resetting a key does not have to be “more secure” than setting it in the first
place).

26

http://mavlink.io/en/mavgen_c/message_signing_c.html
http://mavlink.io/en/mavgen_python/#message_signing
https://mavlink.io/en/messages/common.html#SETUP_SIGNING

Logging RAS-A IOP

The SETUP_SIGNING message should never be broadcast, and received SETUP_
SIGNING messages must never be automatically forwarded to other active
MAVLink devices/streams/channels. This is to avoid the case where a key re-
ceived over a secure link (e.g. USB) is automatically forwarded to another sys-
tem over an insecure link (e.g. Wifi).
Autopilots that don’t offer MAVLink over USB might create a module that can
set the secret key from a command line interface (e.g. the NSH Shell).
We recommend that GCS implementations should generate the secret key and
share this with connected systems over a secure link (e.g. USB). The receiving
systemmay be configured to ignore message signatures on the secure channel
(i.e. accept all signed, unsigned or incorrectly signed packets), so that it is
possible to reset a key that has been lost or corrupted.

Logging
In order to avoid leaking the secret key used for signing, systems should omit
SETUP_SIGNING messages from logs (or replace the secret with 32 0xFF bytes in
the logged message).
Similarly, signed packets should have the signature incompatibility bit cleared
and the signature block removed before being put into telemetry log files. This
makes it harder for potential attackers to collect large amounts of signature
data with which to attack the system.

Packaging and Streaming Video and Metadata
MAVLink Camera Protocol microservice is used to configure camera video
streaming which may optionally include metadata streaming. Video and
metadata streams shall comply with MISB ST 804.4 - Real-Time Protocol
for Motion Imagery and Metadata with the following exceptions: - MPEG-2
video compression shall not be used (MPEG-2 transport streams may still be
optionally used)

Overview
Supported network protocols: - RTP - SRTP - RTCP - RTSP
Supported transport: - Native carriage - MPEG-2 Transport Stream (MPEG-2 TS)
Supported video compression standards: - h.264/AVC
Support for optional KLV-encoded metadata streams.

27

http://mavlink.io/en/guide/message_signing.html#accept_signed_packets
http://mavlink.io/en/guide/message_signing.html#accepting_unsigned_packets
http://mavlink.io/en/guide/message_signing.html#accepting_incorrectly_signed_packets
https://mavlink.io/en/messages/common.html#SETUP_SIGNING
http://mavlink.io/en/guide/mavlink_2.html#incompat_flags
https://nsgreg.nga.mil/doc/view?i=4160
https://nsgreg.nga.mil/doc/view?i=4160

Metadata RAS-A IOP

Supported standards related to packaging and streaming video and metadata
are shown below.

Figure 4: MISB ST 804.4 - Overview

Metadata
When KLVmetadata is included with video it shall be in accordance with MISB ST
0601.18 - UAS Datalink Local Set. No fields are required for servers to include
and servers are not limited to only using fields specified (although additional
fields will not be required to be parsed). All MISB ST 0601.18 fields may be
parsed by clients and clients may parse additional fields as well.

Security
Cryptographically secure media streams are not required (encryption is re-
quired at the data link layer). Secure RTP (SRTP) is acceptable under MISB
ST 804.4 and should to be implemented as follows when utilized: - Implement
both encryption and authentication - Use 256-bit key lengths

Microservices
The MAVLink microservices define higher-level protocols that MAVLink systems
should adopt in order to better inter-operate.
The microservices are used to exchange many types of data, including: param-
eters, missions, trajectories, images, other files. Microservices that support
data to be delivered that would surpass MAVLink message size limits should
define how to disassemble, reassemble, and provide a loss-less delivery mech-
anism. Other services provide command acknowledgment and/or error report-
ing.

28

https://nsgreg.nga.mil/doc/view?i=5453
https://nsgreg.nga.mil/doc/view?i=5453

Datalink Pairing Protocol RAS-A IOP

Most services use the client-server pattern, such that the GCS (client) initiates
a request and the vehicle (server) responds with data.
The microservices are listed below:

• Datalink Pairing Protocol
• Heartbeat/Connection Protocol
• Generic Payload Attribute Protocol
• Telemetry

∘ General requirements
∘ Battery Protocol

• Manual Control Protocol
• Mission Protocol
• Parameter Protocol
• Extended Parameter Protocol
• Command Protocol
• Camera Protocol

∘ Camera Definition
• Gimbal Protocol v2

∘ Gimbal Protocol v1 (superseded)
• File Transfer Protocol (FTP)
• Payload Protocols
• Terrain Protocol
• Exploration Protocol

Datalink Pairing Protocol
Introduction

The pairing process is a secure way to establish a connection between a vehicle
and a ground station device (GCS). It also covers mutual discovery, meaning
that the two devices do not need prior knowledge about the other device. Once
the pairing process is successful, a paired ground station will be able to com-
municate with the vehicle and exchange information such as flight information
(telemetry), video from the vehicle and commands.
Once initiated the pairing process configures the radio so that the connection
is reserved to a specific ground station/vehicle pair and won’t interfere with
other ground stations or vehicles.
The pairing process that is described in this section does not prescribe use of
a particular hardware layer (often called the radio). The modular architecture
allows extension to additional hardware with the simple implementation of a
driver.
The following datalinks have been implemented and verified to work with the
pairing protocol. Note this is not an exclusive list of supported hardware.

29

http://mavlink.io/en/services/camera_def.html
http://mavlink.io/en/services/gimbal.html
http://mavlink.io/en/services/ftp.html
https://mavlink.io/en/services/payload.html

Datalink Pairing Protocol RAS-A IOP

• Microhard pMDDL and pDDL series (tested on the pMDDL2450 and
pDDL1800)

• Doodle Labs Smart Radios
• Silvus Technologies Radios
• Persistent Systems Wave Relay / MPU5
• Trellisware Ghost (TW-870 / TW-875)

Compatible datalinks are required to support AES-256 encryption by default.
There can be different approaches to pair a ground station to a vehicle:

• In-Band Pairing (IB Pairing): Pairing is performed over the same radio link
that is being configured. For example, to pair a GCS and a vehicle that
have Microhard radios, the radios must initially be configured with some
predefined settings so that the two sides can start communicating. This
initial connection allows them to exchange the connection settings that
will be applied on both sides to establish the final connection. This final
connection is then used to exchange telemetry and video between the
GCS and vehicle.

• Out-Of-Band Pairing (OOB Pairing): Pairing is performed using a mech-
anism or channel that is separate to the radio link that is being paired.
There are many possible out-of-band mechanisms for exchanging the ra-
dio connection settings between the GCS and vehicle, including using a
USB cable to transfer the data, or reading the connection settings from a
QR code using a camera (this option is discussed in more detail later in
this section).

A design assumption for the in-band pairing approach is that the pairing proce-
dure has to be performed in a safe area where radio communication cannot be
overheard due to the fact that this procedure is not cryptographically secure.

In-Band Pairing Flow

A GCS that implements this protocol is expected to support UDP unicast as a
transport layer to transfer the JSON files over the network between the GCS
and the vehicle.
The following diagram and steps show the flow of events from boot until the
GCS is connected to the vehicle.
1. Initiate pairing on the vehicle by issuing the MAVLink commandMAV_CMD_
START_RX_PAIR UX is left to the implementer. One example could be a
specific button the user has to press. The vehicle goes into pairing mode
and configures its radio into a pairing mode.

2. The user initiates pairing on the GCS. The GCS goes into pairing mode and
configures its radio for pairing. The GCS and the vehicle are now able to
communicate over the radio link in pairing mode.

30

Datalink Pairing Protocol RAS-A IOP

Figure 5: Full pairing protocol

31

Datalink Pairing Protocol RAS-A IOP

3. The vehicle will start broadcasting the information required for discovery
(See discovery in the API section)

4. The GCS receives the discovery message and now knows the vehicle’s
address

5. At this point the GCS has discovered the vehicle. When this happens most
GCS show the vehicle in the list of discovered vehicles, and the user can
then click on a pair button in the UI to start exchanging the configuration
data that will be used once the systems are paired.

6. After the user indicates that they want to pair with the vehicle, the GCS
will start sending periodic pair requests until the vehicle responds with an
acknowledgement or there is a timeout. This timeout should be set to 10
seconds. The requests should be sent out at least once every 3 seconds. If
the ack is received by the GCS, it will assume that the the vehicle accepted
the pairing request and will now change the radio settings to the values
defined in the pair request. The GCS should change the settings to the
same values and move to the next step.

7. The GCS will start sending periodic connect requests until the vehicle re-
sponds with an acknowledgement or there is a timeout. This timeout
should be set to 10 seconds. The requests should be sent out at least
once every 3 seconds. If the ack is received by the GCS, it will consider
the vehicle to have accepted the proposed connection settings and be
paired.

8. The systems can now connect and exchange MAVLink messages. Usually
the GCS will bind to a local port (either hardcoded or randomly assigned)
that was previously sent to the vehicle in the connect message.

9. The GCS and the vehicle can store the the pairing settings locally.
In the case of multiple GCS connecting the same vehicle the individual pair-
ing between a specific ground station and the vehicle is exactly the same as
described above: a sequence of events between the ground station and the
vehicle. The hand-off of pairing (and subsequently control) is expected to be
covered by future revisions of RAS-A.
The protocol uses a status message to determine if the other end of the com-
munication is still connected. The message should be transmitted at 1Hz fre-
quency from both sides of the communication, and timeouts should be pro-
vided. The standard does not enforce the length of the status timeout because
this could vary with different radios and different types of systems. The sta-
tus message/connection state information can be used for a few different pur-
poses:

• with some radios we might want to change some radio settings when we
lose connection with the other side

• we can use this information to communicate to other software components
both on the vehicle and on the GCS if we are still connected or not

• the pairing software on both sides does not need to monitor various

32

Datalink Pairing Protocol RAS-A IOP

Figure 6: Connect protocol when already paired

33

Datalink Pairing Protocol RAS-A IOP

MAVLink HEARTBEATmessages other components. This could become quite
convoluted when multi GCS or multi vehicle will be supported in the near
future.

Figure 7: Connection loss and reconnection protocol

Default Radio Settings When performing In Band Pairing over the same
radio link that will then be used to connect to the vehicle, a set of default radio
settings has to be defined and applied on both sides (GCS and Vehicle) such
that the two can start communicating. At this point the two sides can exchange
the various pairing messages and start the connection for control, telemetry
and video streaming.

Frequency All the radios used as part of this ecosystem support 1 or more of
the following 6 bands: 1.6, 1.8, 2.0, 2.2, 2.3, 2.4 GHz. If supported the default

34

Datalink Pairing Protocol RAS-A IOP

band for pairing should be the 1.8 GHZ one. If not supported then any other
band is accepted as long as one of the following frequencies is used for each
band:

Band (GHz) Default Pairing Frequency (MHz)
1.6 1723
1.8 1823
2.0 2023
2.2 2223
2.3 2323
2.4 2423

Other Settings The following are the other default settings other than the
frequency mentioned above. The security key is the only one that can be de-
fined by the vendor. All other settings need to match the ones in the table
below.

Setting Default Value
Bandwidth <lowest-bandwidth>
Network ID MH
Security AES-256
Security Key <vendor-specific>
TX power <minimum-power>
Drone Radio Topology access-point

Default Network Settings The following are the default network settings
used by the pairing protocol. By default all GCSs should send UDP packets to
a specific port on the vehicle side.

Setting Default Value
Network ID UDP
Pairing Port 29350

Variable Settings The following table shows the settings that can be modi-
fied from radio defaults during the “pair” phase of the In Band pairing or using
the “reconfigure” message while already paired to the vehicle. If settings are
not changed with one of the two methods, the assumption is that the radio
defaults mentioned above will be used.

35

Datalink Pairing Protocol RAS-A IOP

Setting Allowed Values
Network ID <any-string-that-meets-radio-requirements>
Channel Hz
Bandwidth Hz
Radio Topology access-point, station, mesh, relay
IP Address <valid-ip-address>
Port <port-used-to-send-pairing-messages>
Protocol UDP, TCP

Not all options in the radio topology setting are supported on every radio. The
user should first figure out if the radio supports it and only then try to set the
valid options for the given radio.

Pairing Manager API Except for the discovery message, all other message
need to be sent as a UDP datagram containing the serialized JSON definition
and sent to the source IP that sent the discovery message.

Note: Every message contains a list of drivers that represents the radio
types that are available to pair with on the vehicle and on the GCS side.
These are sent irrespective of the network interface. This is to give the
master side the flexibility of pairing over multiple data links even if they
are not all available during pairing time.

Discovery Advertise the vehicle on the network so that GCS devices can dis-
cover the vehicle and show it to the user. This message needs to be sent out
at least every 3 seconds. The user can then select which vehicle to pair to and
send the connect request. The message needs to be a UDP datagram contain-
ing the serialized JSON definition and sent either via broadcast or multicast. In
the future the standard could be extended with more integrated mechanisms
such as MDNS and Zeroconf. For in band pairing during this phase the radios
have the default (known) settings set so that the two sides can communicate
and start exchanging information. For out of band pairing this step might not
be necessary depending on the type of out of band pairing.
{

"drivers" :
[
{
"ip" : "192.168.168.20",
"name" : "Microhard",
"port" : 29360,
"remote_ip" : "192.168.168.165"

36

Datalink Pairing Protocol RAS-A IOP

}
],
"machine_name" : "vehicle-name",
"request" : "broadcast"

}

Attribute Type Required Description
drivers array yes List of drivers (radio

types) that are available
to pair with on the
vehicle.

ip string yes Radio IP for the unit
connect to the vehicle
(slave).

name string yes Type of driver. Usually
this refers to the radio
model.

port int yes Port used on the vehicle
side (slave).

remote_ip string yes Vehicle IP for the
network interface used
by this driver.

machine_name string yes The vehicle name that
will be shown to the
user when this message
is received by the
ground side (master).

request string yes Set to “broadcast” when
sending this message.

Pair Send pairing request from the ground station to the vehicle. If the ve-
hicle responds with a success then the ground station will add it to the list
of paired vehicles and can then connect without exchanging information next
time. During this phase the radios have the default (known) settings set so
that the two sides can communicate and start exchanging information.
Request
{

"drivers" :
[
{
"instance" : "MH2450",
"ip" : "192.168.168.3",

37

Datalink Pairing Protocol RAS-A IOP

"name" : "Microhard",
"port" : 29350,
"remote_ip" : "192.168.168.241"

}
],
"machine_name" : "QGCGov",
"request" : "pair",
"bandwidth": 4,
"frequency": 1863,
"tx_power": 30,
"network_id": "StringToBeUsedAsMicrohardNetworkId",
"encryption_password": "StringToBeUsedasMicrohardAES256EncryptionPassword"

}

Attribute Type Required Description
drivers array yes List of drivers (radio

types) that are available
to pair with on the
vehicle.

instance string yes This field contains the
driver instance identifier.
This is important when
we have multiple radio
of the same type
connected to the GCS.

ip string yes Radio IP for the unit
connect to the GCS
(master).

name string yes Type of driver. Usually
this refers to the radio
model.

port int yes Port used on the GCS
side (master).

remote_ip string yes GCS IP for the network
interface used by this
driver.

machine_name string yes The GCS name that will
be used by the vehicle
side.

request string yes Set to “pair” when
sending this message.

Response

38

Datalink Pairing Protocol RAS-A IOP

{
"drivers" :
[
{
"instance" : "MH2450",
"ip" : "192.168.168.3",
"name" : "Microhard",
"port" : 29350,
"remote_ip" : "192.168.168.241"

}
],
"machine_name" : "QGCGov",
"request" : "pair",
"accepted": true,
"bandwidth": 4,
"frequency": 1863,
"tx_power": 30,
"network_id": "StringToBeUsedAsMicrohardNetworkId",
"encryption_password": "StringToBeUsedasMicrohardAES256EncryptionPassword"

}

Attribute Type Required Description
drivers array yes List of drivers (radio

types) that are available
to pair with on the
vehicle.

instance string yes This field contains the
driver instance identifier.
This is important when
we have multiple radio
of the same type
connected to the GCS.

name string yes Type of driver. Usually
this refers to the radio
model.

port int yes Port used on the vehicle
side (slave).

remote_ip string yes Vehicle IP for the
network interface used
by this driver.

machine_name string yes The vehicle name that
will be used by the GCS
side.

39

Datalink Pairing Protocol RAS-A IOP

Attribute Type Required Description
response string yes Set to “pair” when

sending this message.

Connect Send connect request from the ground station to the vehicle. If
the vehicle responds with a success then the ground station will add it to the
list of connected vehicles and will open ports to receive telemetry and video
from the vehicle. After the vehicle has responded with an accepted ack to the
pair message, both sides will reconfigure radios to the newly agreed upon RF
seetings and the connect message shall occur on the new radio settings.
Request
{

"drivers" :
[
{
"instance" : "MH2450",
"mavlink_port" : 15667,
"name" : "Microhard",
"remote_ip" : "192.168.168.241"

}
],
"machine_name" : "QGCGov",
"request" : "connect"

}

Attribute Type Required Description
drivers array yes List of drivers (radio

types) that are available
to pair with on the
vehicle.

instance string yes This field contains the
driver instance identifier.
This is important when
we have multiple radio
of the same type
connected to the GCS.

mavlink_port int yes Port on the GCS side
that the vehicle should
start streaming
telemetry to at the end
of the connect phase.

40

Datalink Pairing Protocol RAS-A IOP

Attribute Type Required Description
name string yes Type of driver. Usually

this refers to the radio
model.

remote_ip string yes GCS IP for the network
interface used by this
driver.

machine_name string yes The GCS name that will
be used by the vehicle
side.

request string yes Set to “connect” when
sending this message.

Response
{

"drivers" :
[
{
"instance" : "MH2450",
"mavlink_port" : 15667,
"name" : "Microhard",
"remote_ip" : "192.168.168.165"

}
],
"machine_name" : "vehicle-name",
"request" : "connect",
"accepted" : "y" # y|n

}

Attribute Type Required Description
drivers array yes List of drivers (radio

types) that are available
to pair with on the
vehicle.

instance string yes This field contains the
driver instance identifier.
This is important when
we have multiple radio
of the same type
connected to the GCS.

41

Datalink Pairing Protocol RAS-A IOP

Attribute Type Required Description
mavlink_port int yes Port on the GCS side

that the vehicle should
start streaming
telemetry to at the end
of the connect phase.

name string yes Type of driver. Usually
this refers to the radio
model.

remote_ip string yes Vehicle IP for the
network interface used
by this driver.

machine_name string yes The vehicle name that
will be used by the
vehicle side.

response string yes Set to “connect” when
sending this message.

Disconnect Send the disconnect request from the ground station to the ve-
hicle. Since we don’t know the state of the radios after we send this command,
we don’t expect a response for this message. The GCS will assume it is discon-
nect unless the status message continues coming in. In this case it will show
the vehicle as still connected and the user will need to repeat the action.
Request
{

"machine_name" : "QGCGov",
"request" : "disconnect",

}

Attribute Type Required Description
machine_name string yes The GCS name that will

be used by the vehicle
side.

request string yes Set to “disconnect”
when sending this
message.

Status Send the status message from the vehicle to the ground and then the
ground will respond by taking the same message and replacing the vehicle’s
driver information with its own. This message has a 6 seconds timeout on both
sides to detect when the other side disconnects.

42

Datalink Pairing Protocol RAS-A IOP

Request
{

"drivers" :
[
{
"ip" : "192.168.168.20",
"name" : "Microhard",
"port" : 29360,
"remote_ip" : "192.168.168.165"

}
],
"machine_name" : "vehicle-name",
"request" : "status",
"seq" : 17,
"timestamp" : 1655992758756

}

Attribute Type Required Description
drivers array yes List of drivers (radio

types) that are available
to pair with on the
vehicle.

ip string yes Radio IP for the unit
connect to the vehicle
(slave).

name string yes Type of driver. Usually
this refers to the radio
model.

port int yes Port used on the vehicle
side (slave).

remote_ip string yes Vehicle IP for the
network interface used
by this driver.

machine_name string yes The vehicle name that
will be used by the GCS
side.

request string yes Set to “status” when
sending this message.

seq int yes Sequence number for
the status message.

timestamp int yes Timestamp from the
vehicle side when
sending this message.

43

Datalink Pairing Protocol RAS-A IOP

Response
{

"instance" : "MH2450",
"machine_name" : "QGCGov",
"mavlink_port" : 15667,
"remote_ip" : "192.168.168.241",
"response" : "status",
"seq" : 17,
"timestamp" : 1655992758756

}

Attribute Type Required Description
instance string yes This field contains the

driver instance identifier.
This is important when
we have multiple radio
of the same type
connected to the GCS.

machine_name string yes The vehicle name that
will be used by the GCS
side.

mavlink_port int yes Port on the GCS side
that the vehicle should
start streaming
telemetry to at the end
of the connect phase.

remote_ip string yes Vehicle IP for the
network interface used
by this driver.

machine_name string yes The vehicle name that
will be used by the GCS
side.

response string yes Set to “status” when
sending this message.

seq int yes Sequence number for
the status message.

timestamp int yes Timestamp from the
vehicle side when
sending this message.

Reconfigure Send the reconfigure request from the ground station to the
vehicle. This will change the modem parameters on both sides while we are
connected to a vehicle. No response is expected as the connection usually

44

Datalink Pairing Protocol RAS-A IOP

breaks after this command. If the remote doesn’t respond to status message
in timeout time the settings are reset back to the previous valid values.
Request
{

"drivers" :
[
{
"channel" : "52",
"instance" : "MH2450",
"name" : "Microhard"

}
],
"machine_name" : "QGCGov",
"request" : "reconfigure"

}

Attribute Type Required Description
drivers array yes List of drivers (radio

types) that are available
to pair with on the
vehicle.

channel string yes Channel to set on both
the master and slave
sides. This could be
replaced by other
settings (eg.
bandwidth).

instance string yes This field contains the
driver instance identifier.
This is important when
we have multiple radio
of the same type
connected to the GCS.

name string yes Type of driver. Usually
this refers to the radio
model.

machine_name string yes The vehicle name that
will be used by the GCS
side.

request string yes Set to “reconfigure”
when sending this
message.

45

Datalink Pairing Protocol RAS-A IOP

MAVLink API For systems that use MAVLink communications onboard, the
following command is recommended to trigger pairing:

MAVLink API Description
MAV_CMD_START_RX_PAIR MAVLink command used to set the

pairing manager to pairing mode so it
can be discovered by the GCS. When
this command is received the
microhard is set to pairing settings
and the pairing manager will start to
broadcast its IP to be discovered by
the GCS.

RADIO_STATUS MAVLink stream to send out the radio
status to other components. The
message contains the most common
radio indicators, such as signal
strength and noise. The most
common use cases for this message
are to send it to the GCS to display for
the user or to send to the logging
system onboard so that this data can
be logged.

Out-of-Band Pairing Flow

There are many possible ways to implement out-of-band pairing. This specifica-
tion focuses mainly on using a QR code or a USB cable. Additional mechanisms
may be added in future.

The connect message Send connect request from the ground station to the
vehicle. If the vehicle responds with a success then the ground station will
add it to the list of connected vehicles and will open ports to receive telemetry
and video from the vehicle. During this phase the radios will change from
the default pairing settings to the connect settings that are specified in this
message. The message needs to be a UDP datagram containing the serialized
YAML definition and sent to the source IP that sent the discovery message.
Request
request: connect
hostname: gcs-0001

drivers:
- type: microhard

46

https://mavlink.io/en/messages/common.html#MAV_CMD_START_RX_PAIR
https://mavlink.io/en/messages/common.html#RADIO_STATUS

Datalink Pairing Protocol RAS-A IOP

radio configuration
frequency: 2450000000 #Hz
bandwidth: 4000000 #Hz
topology: mesh
network_id: network_mh_0001
security_key: 00000000111111112222222233333333444444445555555566666666aaaaaaaa
tx_power: 100 #mW

device configuration
device_ip: 192.168.168.3

MAVLink service: this is only required for systems that expose a MAVLink port so that other systems can connect to it
mavlink_protocol: udp
mavlink_port: 15667

- type: psmpu5

radio configuration
frequency: 2450000000
bandwidth: 10000000
topology: mesh
network_id: network_mpu5_0001
security_key: 00000000111111112222222233333333444444445555555566666666aaaaaaaa

device configuration
device_ip: 172.20.100.103

MAVLink service: this is only required for systems that expose a MAVLink port so that other systems can connect to it
mavlink_protocol: udp
mavlink_port: 15667

General Settings

Attribute Type Required Description
request string yes Set to “connect” when

sending this message.
hostname string yes GCS hostname. Mainly

used for caching
purposes on the vehicle
side.

47

Datalink Pairing Protocol RAS-A IOP

Attribute Type Required Description
drivers string yes A list that will contain all

the available radios in
the system. Each
element in the list will
contain all the settings
for the specific radio.

Radio Specific Settings

Attribute Type Required Description
frequency int yes Frequency to be set on

the vehicle radio.
bandwidth int yes Bandwidth to be set on

the vehicle radio.
topology string yes Radio network topology.

Possible options:
ACCESS_POINT,
STATION, MESH, RELAY

network_id string no Network id to specify in
the radio. Not all radios
support this so this field
is optional.

security_key string yes Security key to set in
the radio to encrypt all
the data going over the
link.

tx_power int no Transmit power to be
used by the vehicle
when sending data to
the GCS. If not set the
vehicle can use it’s
default power setting.

device_ip string yes GCS IP.

48

Datalink Pairing Protocol RAS-A IOP

Attribute Type Required Description
mavlink_protocol string no Use TCP or UDP to

stream MAVLink. This is
actually decided by the
side that binds to the
telemetry port. If the
vehicle binds to the
telemetry port and the
GCS connects to it then
the vehicle should
specify this in the
response to this
message. If the CGS
specifies this then the
vehicle will need to use
this protocol.

mavlink_port int no Port to connect to to
receive MAVLink. Same
consideration as for the
mavlink_protocol field.

Response
response: connect
hostname: vehicle-0080

drivers:
- type: microhard

device configuration
device_ip: 192.168.168.4

MAVLink service: this is only required for systems that expose a MAVLink port so that other systems can connect to it
mavlink_protocol: udp
mavlink_port: 15667

- type: psmpu5

device configuration
device_ip: 172.20.100.104

MAVLink service: this is only required for systems that expose a MAVLink port so that other systems can connect to it
mavlink_protocol: udp
mavlink_port: 15667

49

Datalink Pairing Protocol RAS-A IOP

General Settings

Attribute Type Required Description
response string yes Set to “connect” when

sending this message.
hostname string yes Vehicle hostname.

Mainly used for caching
purposes on the GCS
side and to display the
vehicle name in the
GCS.

drivers string yes A list that will contain all
the available radios in
the system. Each
element in the list will
contain all the settings
for the specific radio.

Radio Specific Settings

Attribute Type Required Description
device_ip string yes Vehicle IP.
mavlink_protocol string no Use TCP or UDP to

stream MAVLink. This is
actually decided by the
side that binds to the
telemetry port. If the
GCS binds to the
telemetry port and the
vehicle connects to it
then the GCS should
specify this in the
request for this
message. If the vehicle
specifies this then the
GCS will need to use
this protocol.

50

Datalink Pairing Protocol RAS-A IOP

Attribute Type Required Description
mavlink_port int no Port to connect to to

receive MAVLink. Same
consideration as for the
mavlink_protocol field.

QR Code Pairing The idea behind this mechanism is to serialize the radio
configurations and embed them into a QR code. There are two possible ways
to exchange information between the GCS and vehicle using the QR code:

• Add a sticker with a QR code to the vehicle that contains the default pairing
settings. The GCS can scan the QR code with its camera and apply the
same pairing settings on the GCS in order to establish the radio link.

• Every time pairing is triggered from the GCS UI a QR code is generated
on the screen. The vehicle can scan the QR code with its camera and
apply the same settings. This QR code is more flexible because it can be
generated from user inputs in the UI, and can be changed as needed (with
the first approach the QR code is hardcoded).

USB Pairing (Ethernet over USB) To make communication simpler and
more flexible Ethernet over USB is used. This has the advantage of having
a predefined link that goes through the USB cable, but we will still need some
discovery mechanism where one of the two sides advertises its IP to the other
side. For this mechanism the steps are:
1. Employ an Ethernet connection over usb between the GCS and the vehicle
to make communication simpler and more flexible

2. Plug in a usb cable from the vehicle to the GCS
3. Vehicle sends “discovery” message as broadcast
4. GCS receives the message, stores the vehicle IP and sends the “connect”
message with the desired radio settings

5. Vehicle responds to “connect” request to acknowledge and include the
MAVLink port that it is exposing to telemetry

6. Now the radio link is fully established and the two sides can start commu-
nicating over it and the user could unplug the USB cable from this point

7. GCS connects to the telemetry port over the radio link

Message/Enum Summary

51

Datalink Pairing Protocol RAS-A IOP

Table 29: Message Description

Message Description
HEARTBEAT Broadcast that a MAVLink component is present and

responding, along with its type (MAV_TYPE) and other
properties.

Table 30: ENUM Description

Enum Description
MAV_TYPE Type of the component. Flight controllers must report the

type of the vehicle on which they are mounted (e.g. MAV_
TYPE_OCTOROTOR). All other components must report a value
appropriate for their type (e.g. a camera must use MAV_
TYPE_CAMERA). For generic RAS-A components, [MAV_TYPE_
GENERIC_COMPONENT][MAV_TYPE_GENERIC_COMPONENT]
should be used as the MAV_TYPE.

MAV_AUTOPILOT Autopilot type / class.
MAV_MODE_FLAG System mode bitmap.
MAV_STATE System status flag.

HEARTBEAT Broadcast Frequency

Components must regularly broadcast their HEARTBEAT and monitor for heart-
beats from other components/systems.
The rate at which the HEARTBEAT message must be broadcast, and how many
messages may be “missed” before a system is considered to have timed
out/disconnected from the network, depends on the channel (it is not defined
by MAVLink). On RF telemetry links, components typically publish their
heartbeat at 1 Hz and consider another system to have disconnected if four or
five messages are not received.
A component may choose not to send or broadcast information on a channel
(other than the HEARTBEAT) if it does not detect another system, and it will con-
tinue to send messages to a system while it is receiving heartbeats. Therefore
it is important that systems:

• broadcast a heartbeat even when not commanding the remote system.
• do not broadcast a heartbeat when they are in a faulted state (i.e. do not
publish a heartbeat from a separate thread that is unaware of the state of
the rest of the component).

52

https://mavlink.io/en/messages/common.html#HEARTBEAT
https://mavlink.io/en/services/heartbeat.html#MAV_TYPE
https://mavlink.io/en/services/heartbeat.html#MAV_TYPE
https://mavlink.io/en/messages/common.html#MAV_AUTOPILOT
https://mavlink.io/en/messages/common.html#MAV_MODE_FLAG
https://mavlink.io/en/messages/common.html#MAV_STATE

Datalink Pairing Protocol RAS-A IOP

Connecting to a GCS or MAVLink API

The HEARTBEATmay also be used by GCS (or Developer API) to determine if it can
connect to a vehicle in order to collect telemetry and send missions/commands.
For example, QGroundControl will only connect to a vehicle system (i.e. not
another GCS, gimbal, or onboard controller) before displaying the vehicle con-
nected message. QGC also uses the specific type of vehicle and other heart-
beat information to control layout of the GUI.
The specific code for connecting to QGroundControl can be found in MultiVehi-
cleManager.cc (see void void MultiVehicleManager::_vehicleHeartbeatInfo).

Component Identity

The type (MAV_TYPE) of a component is obtained from its HEARTBEAT.type field.
• A flight controller component will use a MAV_TYPE corresponding to a partic-
ular vehicle - e.g. MAV_TYPE_FIXED_WING, MAV_TYPE_QUADROTOR etc. (The use of
any of these “vehicle types” indicates the component is a flight controller).

• For generic RAS-A components, use [MAV_TYPE_GENERIC_COMPONENT][MAV_
TYPE_GENERIC_COMPONENT].

• Prior to the RAS-A IOP v1.2 other components used their actual type,
e.g. MAV_TYPE_GIMBAL, MAV_TYPE_BATTERY, etc. | deprecated

Every component must have a system-unique component ID, which is used for
routing and for identifying multiple instances of a particular component type.
Historically the component ID was also used to determine the component type.
For any MAVLink system implementing the generic ras-a payload interface, it
is encouraged to think of the unique MAV_COMPONENT field in heartbeats as simply
a unique component number used for routing and topological purposes. New
code must not make any assumption about the type from the ID used (type is
determined from HEARTBEAT.type).
MAVLink recommends that by default components use a type-appropriate com-
ponent id from MAV_COMPONENT, and provide an interface to change the compo-
nent ID if needed. For example, a camera component might use any of the MAV_
COMP_ID_CAMERAn IDs, and should not use MAV_COMP_ID_GPS2.
MAV_COMP_ID_MONOLITHIC is used for systems which implement many different
component behaviors which are not well captured by a single component ID.
Using type-specific component IDs:

• Makes ID clashes less likely “out of the box” (unless two components of
the same type are present on the same system).

• Reduces the impact on legacy code that determines component type from
the ID. No breaking changes are allowed to component identity methods

53

https://github.com/mavlink/qgroundcontrol/blob/master/src/Vehicle/MultiVehicleManager.cc
https://github.com/mavlink/qgroundcontrol/blob/master/src/Vehicle/MultiVehicleManager.cc
https://mavlink.io/en/services/heartbeat.html#MAV_TYPE
https://mavlink.io/en/messages/common.html#HEARTBEAT
https://mavlink.io/en/messages/common.html#MAV_COMPONENT
https://mavlink.io/en/messages/common.html#MAV_COMPONENT
https://mavlink.io/en/messages/common.html#MAV_COMP_ID_CAMERA
https://mavlink.io/en/messages/common.html#MAV_COMP_ID_CAMERA

Generic Payload Attribute Protocol RAS-A IOP

until the RAS-A IOP v2.0 is released.

Generic Payload Attribute Protocol
Any system component which presents a heartbeat containing MAV_TYPE_
GENERIC_COMPONENT implements the Generic Payload Attribute Protocol.
Any MAV_TYPE_GENERIC_COMPONENT implements the Parameter Protocol and ex-
presses what type of payload it is and its attributes via mavlink parameter
exchange.

Attribute Parameter Schema

The parameter naming schema for generic component attributes parameters
are as follows:
All RAS-A specifc standard parameters have 4 blocks in the parameter’s string
separated by periods (ASCII 0x2E): ___
RAS.<x>.<y>.<n> - RAS: standard start - <x>: type - <y>: attribute name - n: group
number (may be omitted, may be no larger than 255) ___
The convention for the second block specifies what block <y> contains: ___
RAS.<A>.<y>.<n> - An Attribute which can be associated with a capability by
group <n>, or is standalone
RAS.<C>.<y>.<n> - A Capability where the string in <y> specifies a RAS-A capaibil-
ity
RAS.<x>.<y>.<n> - <n> contains a base 10 integer group number. If omitted from
the parameter string, the parameter belongs to the default group. ___
All parameters are grouped. Any repeating attributes or capabilities must be
part of separate groups, repeating attributes within a group are not allowed.
If the number in the last block is omitted, it belongs to the default group.
RAS.<x>.<y> - Belongs to the default group RAS.<x>.<y>.0 - Belongs
to group 0 RAS.C.EMIT.0 - Denotes an emitter capabilty in group 0
RAS.C.EMIT.1 - Denotes an second emitter capability in group 1

Default Parameters Contents of the payload / capability attribute parame-
ter payload are to be defined in the IOP and convey properties of the attribute.
As RAS-A versions increment, this list will grow.

54

Generic Payload Attribute Protocol RAS-A IOP

RAS-A Version Parameter Name Description
1.2 RAS.C.EMIT Attribute belongs to a

component that emits
something, intended to
be ued with components
that emit light, or sound.

1.2 RAS.A.POWER Attribute that describes
a power level in percent
from 0 to 100

1.2 RAS.A.PERIOD Period of some sort of
emitter frequency. This
value is in seconds.

1.2 RAS.A.DUTY Emitter period PWM
duty cycle.

1.2 RAS.A.ONLY Within a component if
ONLY exists within a
group and is set to 1,
only that group may be
“ACTIVE” at any time.
E.g. you have 3 emitter
groups (0,1, and 2) with
ONLY and group 0 is set
to ONLY (1), group 0
may only be on if 1 and
2 are off. An exclusivity
trait.

1.2 RAS.A.TEMP Read-only attribute for
reading temperature.
Value is in celsius.

1.2 RAS.C.DEPLOY Component supports
mavlink command for
payload deployment
control.

1.2 RAS.C.ARM Component supports
the arming
authorization protocol.

1.2 RAS.C.PARENT Value of this paramter
contains the parents
compoenent number
that this component is
attached to.

1.2 RAS.A.ACTIVE Attribute used to set a
component group to
active.

55

Generic Payload Attribute Protocol RAS-A IOP

RAS-A Version Parameter Name Description
1.2 RAS.C.GIMB Component implements

gimbal microservice
with version number
contained in parameter
value.

1.2 RAS.C.FRAME The frame of reference
for the component.
Value contains MAV_
FRAME.

1.2 RAS.C.T1 First translation
parameter in the
RAS.C.FRAME

1.2 RAS.C.T2 Second translation
parameter in the
RAS.C.FRAME

1.2 RAS.C.T3 Third translation
parameter in the
RAS.C.FRAME

1.2 RAS.C.QUATX First quaternion rotation
parameter in the
RAS.C.FRAME

1.2 RAS.C.QUATY Second quaternion
rotation parameter in
the RAS.C.FRAME

1.2 RAS.C.QUATZ Third quaternion
rotation parameter in
the RAS.C.FRAME

1.2 RAS.C.QUATW Fourth quaternion
rotation parameter in
the RAS.C.FRAME

1.2 RAS.C.MAVCAM Component implements
the camera microservice

Example Generic Payload: Gimbal with Camera

This example describes a gimbal with two components, which all-together: -
Implements Gimbal Control V2 - Has a camera on it - Separate payload - Has
a laser pointer on it - Gimbal Controlled Capability - Has an illuminator on it -
Gimbal Controlled Capability - Has a widget on it - Gimbal Controlled Capability
- Has 5 distinct elements: Camera, illuminator, widget, laser, gimbal.
This gimbal has a gimbal controller which is conneted over UART to a mission
computer, and a camera which is IP addressable. In this case the gimbal would

56

https://mavlink.io/en/services/mission.html#MAV_FRAME
https://mavlink.io/en/services/mission.html#MAV_FRAME

Generic Payload Attribute Protocol RAS-A IOP

emit two distinct payload heartbeats, one for the gimbal, and one for the cam-
era.
Through the generic payload parameter interface, two heartbeats expose
the following capabilities via parameter exchange: Capabilities: Illumina-
tion (Green), Laser (LWIR), Widget (Trumpet Sounds), Gimbal (V2), Known
Translation / Rotation.
Heartbeat 1 leads to discovery of the following parameters: PARAM: RAS.C.GIMB
- Version lives in param_value (V2) PARAM: RAS.C.EMIT.0 - TYPE lives in the
param_value (green led) PARAM: RAS.C.EMIT.1 - TYPE lives in the param_value
(LWIR laser CW ON/OFF) PARAM: RAS.C.EMIT.2 - TYPE lives in the param_value
(Trumpets) PARAM: RAS.C.FRAME - Reference frame for translation lives in param_
value (LOCAL_NED) PARAM: RAS.C.T1 - Translation value 1 in the param_value
PARAM: RAS.C.T2 - Translation value 2 in the param_value PARAM: RAS.C.T3 -
Translation value 3 in the param_value PARAM: RAS.C.QUATX - Quaternion x in
the param_value PARAM: RAS.C.QUATY - Quaternion y in the param_value PARAM:
RAS.C.QUATZ - Quaternion z in the param_value PARAM: RAS.C.QUATW - Quaternion
w in the param_value
Heartbeat 2 leads to discovery of the following parameters: PARAM:
RAS.C.MAVCAM - Version lives in param_value PARAM: RAS.C.PARENT - Gimbal
Component ID 1 in the param_value

Monolithic Case Here we have all of the following capabilities presented by
a fully monolithic component instead of via two separate components.

Example Generic Payload: Parachute

Example 3: Mavlink-controlled Chute Chute - Mavlink Controlled - Controlled
Directly From A Flight Computer Component ID: MAV_COMP_CHUTE Features: Ca-
pability: ON/OFF Has 1 distinct elements: Fuselage 1 Generic payload heart-
beats: Chute with parent fuselage Chute: Capability: ON/OFF Flight controller
would know that it can send a MAV_CMD to this component ID based on its
capability attributes discovered via parameter exchange.
Heartbeat 1 leads to discovery of the following parameters: PARAM:
RAS.C.DEPLOY - Type lives in param_value (BINARY) PARAM: RAS.C.RETRACT -
Supports the retraction command / message set (TBD) PARAM: RAS.C.INTERLOCK
- Supports the interlock command / message set (TBD) PARAM: RAS.C.ARM -
Supports the arming command / message set PARAM: RAS.C.PARENT - Parent
component number lives in param_value

57

MAV_CMD

Generic Payload Attribute Protocol RAS-A IOP

Figure 8: Parameter Exchange For Gimbal and Camera

58

Generic Payload Attribute Protocol RAS-A IOP

Figure 9: Parameter Exchange For Monolithic Gimbal and Camera

59

Telemetry RAS-A IOP

Telemetry
This section includes the required and recommended telemetry to be sent from
the vehicle and to be processed by a GCS implementation that is compliant
with this IOP. Note that although not clearly part of a microservice, the vehicle
telemetry is considered a must in order to provide appropriate flight controller,
sensors and peripheral status (like radios or batteries) to the operator.

General requirements and recommendations

The following table provides the required and recommended telemetry to be
sent from the drone and/or its peripherals. Note that by default these telemetry
messages come from the MAVLink component ID 1, which represents the flight
controller component. “One-shot” messages should be requested using the
MAV_CMD_REQUEST_MESSAGE command.

Message Description

Required
minimum
rate (Hz)

Max rate
(Hz)

Required
ALTITUDE The current system altitude. Should

be sent when GLOBAL_POSITION_INT
is not available to be sent.

5 10

ATTITUDE The attitude of the vehicle in the
aeronautical frame.

15 30

BATTERY_
STATUS

Part of the Battery Protocol. Battery
information. Updates GCS with flight
controller battery status. Smart
batteries also use this message

1 1

SMART_BA
TTERY_ST
ATUS

Part of the Battery Protocol. Smart
Battery information (static/infrequent
update). Use for updates from: smart
battery to flight stack, flight stack to
GCS.

“One-shot” “One-shot”

EXTENDED
_SYS_STA
TE

Provides state for additional features.
Required to provide the landing state
to the GCS.

1 1

GLOBAL_P
OSITION_IN
T

The filtered global position (e.g. fused
GPS and accelerometers). The
position is in GPS-frame
(right-handed, Z-up).

5 10

GPS_RAW_
INT

The global position, as returned by
the Global Positioning System (GPS).

5 5

60

ALTITUDE
ATTITUDE
BATTERY_STATUS
BATTERY_STATUS
SMART_BATTERY_STATUS
SMART_BATTERY_STATUS
SMART_BATTERY_STATUS
EXTENDED_SYS_STATE
EXTENDED_SYS_STATE
EXTENDED_SYS_STATE
GLOBAL_POSITION_INT
GLOBAL_POSITION_INT
GLOBAL_POSITION_INT
GPS_RAW_INT
GPS_RAW_INT

Manual Control Protocol RAS-A IOP

Message Description

Required
minimum
rate (Hz)

Max rate
(Hz)

HEARTBEA
T

The heartbeat message shows that a
system or component is present and
responding.

1 1

HOME_POS
ITION

Contains the home position. The
home position is the default position
that the system will return to and
land on.

“One-shot” “One-shot”

RADIO_ST
ATUS

Status generated by radio and
injected into MAVLink stream.

1 1

SYS_STAT
US

The general system state. 1 1

Recommended
ACTUATOR
OUTPUT
STATUS

The raw values of the actuator
outputs.

5 20

ESTIMATO
R_STATUS

Estimator status message including
flags, innovation test ratios and
estimated accuracies.

1 1

LOCAL_PO
SITION_N
ED

The filtered local position (e.g. fused
computer vision and accelerometers).
Coordinate frame is right-handed,
Z-axis down.

5 30

Manual Control Protocol
The Manual Control Protocol enables controlling a system using a “standard
joystick” (or joystick-like input device that supports the same axes nomencla-
ture).
The protocol is implemented with just the MANUAL_CONTROL message. It
defines the target system to be controlled, the movement in four primary axes
(x, y, z, r) and two extension axes (s, t), and two 16-bit fields to represent the
states of up to 32 buttons (buttons, buttons2). Unused axes can be disabled,
and the extension axes must be explicitly enabled using bits 0 and 1 of the
enabled_extensions field.
The protocol is by intent relatively simple and abstract, and provides a simple
way of controlling the main motion of a vehicle, along with several arbitrary
features that can be triggered using buttons.
This allows GCS software to provide a simple level of control for many types of

61

HEARTBEAT
HEARTBEAT
HOME_POSITION
HOME_POSITION
RADIO_STATUS
RADIO_STATUS
SYS_STATUS
SYS_STATUS
ACTUATOR_OUTPUT_STATUS
ACTUATOR_OUTPUT_STATUS
ACTUATOR_OUTPUT_STATUS
ESTIMATOR_STATUS
ESTIMATOR_STATUS
LOCAL_POSITION_NED
LOCAL_POSITION_NED
LOCAL_POSITION_NED
MANUAL_CONTROL

Manual Control Protocol RAS-A IOP

vehicles, and allows new vehicle types with unusual functions to operate with
minimal (if any) changes to the MAVLink protocol or existing GCS software.

Mapping Axes

Manual control is performed in the vehicle-frame. All axis values are normalized
to the range -1000 to 1000.
Note: the GCS implementation might opt to normalize between 0 and 1000
for some of the axis. E.g. the Z-axis when used for throttle or altitude con-
trol), since in some flight control implementations, a negative value on this axis
means a negative thrust values (used for example with rovers). QGC Govern-
ment Edition sends by default the throttle values normalized between
0 and 1000, unless the operator tips the “Allow negative Thrust” op-
tion on the Joystick configuration panel.

Rotation-Focused Control The typical axis assignments for a thrust- and
rotation-controlled vehicle (e.g. planes, multi-copters) are listed below.

Field Motion Axis +VE direction -VE direction
x pitch forward/nose-down backward/nose-up
y roll right-down left-down
z thrust positive negative
r yaw counter-clockwise clockwise

Directional Control Vehicles with direct control over vehicle translation di-
rections (multicopters) typically use the following mappings.

Field Motion Axis +VE direction -VE direction
x forward forward backward
y lateral right left
z vertical up down
r yaw counter-clockwise clockwise
s pitch forward/nose-down backward/nose-up
t roll right-down left-down

Mapping Buttons

Button functions are vehicle/flight-stack dependent. The following are refer-
ence implementations that can be used as examples:

62

Manual Control Protocol RAS-A IOP

• ArduPilot treats button values as user-configurable using firmware param-
eters (e.g. ArduCopter’s BTN_FUNCn or ArduSub’s BTNn_FUNCTION), through
the Parameter or Extended Parameter protocols.

• PX4 defines fixed meanings to some of the buttons values, and these are
mapped to user-selected functions by the ground control station (applica-
ble also to QGC-Gov).

The buttons field is required, and corresponds to the first 16 buttons.
buttons2 is an extension, and corresponds to the optional second set of 16
buttons.

Alternatives

Vehicles may alternatively be controlled by sending information as a set of up to
18 channel values using RC_CHANNELS_OVERRIDE. Channels can be mapped
to firmware parameters using PARAM_MAP_RC, and the autopilot can use the
current parameter values at each point in time to determine control actions.
It’s worth noting that the generality of RC channels control is a double-edged
sword. It is incredibly versatile, and can be used to provide support for several
arbitrary control axes, but the user-defined in-vehicle nature of the mapped
parameters means additional setup is frequently required for compatibility with
GCSs, and there are no guarantees that multiple vehicles running the same
firmware will have the same channel-parameter mapping. This is a similar
issue to the MANUAL_CONTROL buttons, so to minimize firmware complexity and
maximize interoperability between a vehicle type and GCSs it’s recommended
to use targeted MAVLink commands where possible.
Note: Under this IOP, the supported way to manually control the vehicle
through a joystick is using the MANUAL_CONTROL message.

Implementations

The protocol has been implemented in various GCSs and vehicle firmwares.
These implementations can be used in your own code within the terms of their
software licenses.

Ground Control Stations The protocol has been implemented in
QGroundControl/QGC-Gov and Mission Planner. These can be used as
reference implementations:

QGroundControl / QGC-Gov implementation
• src/Joystick/Joystick.cc (in _handleAxis method)

63

RC_CHANNELS_OVERRIDE
PARAM_MAP_RC
MANUAL_CONTROL
https://github.com/mavlink/qgroundcontrol/blob/master/src/Joystick/Joystick.cc

Mission Protocol RAS-A IOP

Note: QGC sends the MANUAL_CONTROL messages at a fixed rate of 30hz
and always streams the message when a joystick is connected or the virtual
joystick is enabled. This has implications on the implementation on the vehicle
side, since it will have to verify if there were updates on the sticks to consider
an update on the manual control of the vehicle.

MissionPlanner implementation
• MainV2.cs (in joysticksend method)

Vehicle Firmwares The protocol has been implemented in PX4, and in the
Copter, Plane, Rover, and Sub vehicles firmware in ArduPilot.

PX4 Implementation
• mavlink_receiver.cpp (in handle_message_manual_control method)

ArduPilot Implementations
• ArduCopter/GCS_Mavlink.cpp (in handleMessage method)
• ArduPlane/GCS_Mavlink.cpp (in handleMessage method)
• ArduRover/GCS_Mavlink.cpp (in handle_manual_control method)
• ArduSub/joystick.cpp (in transform_manual_control_to_rc_override
method)

Future Extensions

Future extensions are likely to be handled with additional targeted MAVLink
commands rather than mapping functionality in the flight controller (i.e. han-
dling more complex inputs in the GCS to reduce vehicle firmware complexity).

Mission Protocol
The mission sub-protocol allows a GCS or developer API to exchange mission
(flight plan), geofence and safe point information with a drone/component.
The protocol covers:

• Operations to upload, download and clear missions, set/get the current
mission item number, and get notification when the current mission item
has changed.

• Message type(s) and enumerations for exchanging mission items.
• Mission Items (“MAVLink commands”) that are common to most systems.

The protocol supports re-request of messages that have not arrived, which al-
lows missions to be reliably transferred over a lossy link.

64

MANUAL_CONTROL
https://github.com/ArduPilot/MissionPlanner/blob/master/MainV2.cs
https://github.com/PX4/PX4-Autopilot/blob/master/src/modules/mavlink/mavlink_receiver.cpp
https://github.com/ArduPilot/ardupilot/blob/master/ArduCopter/GCS_Mavlink.cpp
https://github.com/ArduPilot/ardupilot/blob/master/ArduPlane/GCS_Mavlink.cpp
https://github.com/ArduPilot/ardupilot/blob/master/ArduRover/GCS_Mavlink.cpp
https://github.com/ArduPilot/ardupilot/blob/master/ArduSub/joystick.cpp

Mission Protocol RAS-A IOP

Mission Types

MAVLink 2 supports three types of “missions”: flight plans, geofences and
rally/safe points. The protocol uses the same sequence of operations for all
types (albeit with different types of Mission Items). The mission types must be
stored and handled separately/independently.
Mission protocol messages include the type of associated mission in the mis-
sion_type field (a MAVLink 2message extension). The field takes one of the MAV_
MISSION_TYPE enum values: MAV_MISSION_TYPE_MISSION, MAV_MISSION_TYPE_FENCE,
MAV_MISSION_TYPE_RALLY.
MAVLink 1 supports only “regular” flight-plan missions (this is implied/not ex-
plicitly set).

Mission Items (MAVLink Commands)

Mission items for all the mission types are defined in the MAV_CMD enum.
MAV_CMD is used to define commands that can be used in missions (“mission
items”) and commands that can be sent outside of a mission context (using
the Command Protocol). Some MAV_CMD can be used with both mission and com-
mand protocols. Not all commands/mission items are supported on all systems
(or for all flight modes).
The items for the different types of mission are identified using a simple name
prefix convention:

• Flight plans:
∘ NAV commands (MAV_CMD_NAV_*) for navigation/movement (e.g. MAV_
CMD_NAV_WAYPOINT, MAV_CMD_NAV_LAND)

∘ DO commands (MAV_CMD_DO_*) for immediate actions like changing
speed or activating a servo (e.g. MAV_CMD_DO_CHANGE_SPEED).

∘ CONDITION commands (MAV_CMD_CONDITION_*) for changing the execu-
tion of the mission based on a condition - e.g. pausing the mission for
a time before executing the next command (MAV_CMD_CONDITION_DELAY).

• Geofence mission items:
∘ Prefixed with MAV_CMD_NAV_FENCE_ (e.g. MAV_CMD_NAV_FENCE_RETURN_
POINT).

• Rally point mission items:
∘ There is just one rally point MAV_CMD: MAV_CMD_NAV_RALLY_POINT.

Mission items (MAV_CMD) are transmitted/encoded in MISSION_ITEM_INTmessages.
This message includes fields to identify the particular mission item (command
id) and up to 7 command-specific optional parameters.

65

http://mavlink.io/en/services/mission.html#mavlink_commands
https://mavlink.io/en/messages/common.html#MAV_MISSION_TYPE
https://mavlink.io/en/messages/common.html#MAV_MISSION_TYPE
https://mavlink.io/en/messages/common.html#MAV_MISSION_TYPE_MISSION
https://mavlink.io/en/messages/common.html#MAV_MISSION_TYPE_FENCE
https://mavlink.io/en/messages/common.html#MAV_MISSION_TYPE_RALLY
http://mavlink.io/en/services/mission.html#mission_types
https://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_CHANGE_SPEED
https://mavlink.io/en/messages/common.html#MAV_CMD_CONDITION_DELAY
https://mavlink.io/en/messages/common.html#MAV_CMD_NAV_FENCE_RETURN_POINT
https://mavlink.io/en/messages/common.html#MAV_CMD_NAV_FENCE_RETURN_POINT
https://mavlink.io/en/messages/common.html#MAV_CMD_NAV_RALLY_POINT
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT

Mission Protocol RAS-A IOP

Field
Name Type Values Description
command uint16_t MAV_CMD Command id, as defined in MAV_CMD.
param1 float Param #1.
param2 float Param #2.
param3 float Param #3.
param4 float Param #4.
param5
(x)

int32_t X coordinate (local frame) or latitude
(global frame) for navigation
commands (otherwise Param #5).

param6
(y)

int32_t Y coordinate (local frame) or longitude
(global frame) for navigation
commands (otherwise Param #6).

param7
(z)

float Z coordinate (local frame) or altitude
(global - relative or absolute,
depending on frame) (otherwise Param
#7).

Table 11:Command-specific Optional Parameters
The first four parameters (shown above) can be used for any purpose - this
depends on the particular command. The last three parameters (x, y, z) are
used for positional information in MAV_CMD_NAV_* commands, but can be used for
any purpose in other commands.
The remaining message fields are used for addressing, defining the mission
type, specifying the reference frame used for x, y, z in MAV_CMD_NAV_*messages,
etc.:

Field Name Type Values Description
target_system uint8_t Deprecated. It is expected that

the message only gets sent to the
correct system by the underlying
routing protocol

target_
component

uint8_t Component ID

seq uint16_t Sequence number for item within
mission (indexed from 0).

frame uint8_t MAV_FRAME The coordinate system of the
waypoint.

mission_type uint8_t MAV_
MISSION_
TYPE

Mission type.

66

https://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/messages/common.html#mav_commands
http://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/services/mission.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#MAV_MISSION_TYPE
https://mavlink.io/en/messages/common.html#MAV_MISSION_TYPE
https://mavlink.io/en/messages/common.html#MAV_MISSION_TYPE
http://mavlink.io/en/services/mission.html#mission_types

Mission Protocol RAS-A IOP

Field Name Type Values Description
current uint8_t false:0,

true:1
When downloading, whether the
item is the current mission item.

autocontinue uint8_t Autocontinue to the next
waypoint when the command
completes.

Table 12: Message Fields Description

Message/Enum Summary

The following messages and enums are used by the service.

Table 37: Messages

Message Description
MISSION_REQUEST_LIST Initiate mission download from a system by

requesting the list of mission items.
MISSION_COUNT Send the number of items in a mission. This is used

to initiate mission upload or as a response to
MISSION_REQUEST_LIST when downloading a mission.

MISSION_REQUEST_INT Request mission item data for a specific sequence
number be sent by the recipient using a MISSION_
ITEM_INT message. Used for mission upload and
download.

MISSION_ITEM_INT Message encoding a mission item/command (defined
in a MAV_CMD). Used for mission upload and download.

MISSION_ACK Acknowledgment message when a system
completes a mission operation (e.g. sent by autopilot
after it has uploaded all mission items). The
message includes a MAV_MISSION_RESULT indicating
either success or the type of failure.

MISSION_CURRENT Message containing the current mission item
sequence number. This is emitted when the current
mission item is set/changed.

MISSION_SET_CURRENT Set the current mission item by sequence number
(continue to this item on the shortest path).

STATUSTEXT Sent to notify systems when a request to set the
current mission item fails.

MISSION_CLEAR_ALL Message sent to clear/delete all mission items stored
on a system.

67

https://mavlink.io/en/messages/common.html#MISSION_REQUEST_LIST
http://mavlink.io/en/services/mission.html#download_mission
https://mavlink.io/en/messages/common.html#MISSION_COUNT
https://mavlink.io/en/messages/common.html#MISSION_REQUEST_LIST
https://mavlink.io/en/services/mission.html#MISSION_REQUEST_INT
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
http://mavlink.io/en/services/mission.html#mavlink_commands
https://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/services/mission.html#MISSION_ACK
http://mavlink.io/en/services/mission.html#operations
https://mavlink.io/en/messages/common.html#MAV_MISSION_RESULT
https://mavlink.io/en/messages/common.html#MISSION_CURRENT
http://mavlink.io/en/services/mission.html#current_mission_item
http://mavlink.io/en/services/mission.html#current_mission_item
https://mavlink.io/en/messages/common.html#MISSION_SET_CURRENT
http://mavlink.io/en/services/mission.html#current_mission_item
https://mavlink.io/en/messages/common.html#STATUSTEXT
https://mavlink.io/en/messages/common.html#MISSION_CLEAR_ALL

Mission Protocol RAS-A IOP

Message Description
MISSION_ITEM_REACHED Message emitted by system whenever it reaches a

new waypoint. Used to monitor progress.

Table 38: Enum

Enum Description
MAV_MISSION_TYPE Mission type for message (mission, geofence, rally

points).
MAV_MISSION_RESULT Used to indicate the success or failure reason for an

operation (e.g. to upload or download a mission).
This is carried in a MISSION_ACK.

MAV_FRAME Coordinate frame for position/velocity/acceleration
data in the message.

MAV_CMD Mission Items (and MAVLink commands) sent in
MISSION_ITEM_INT.

Deprecated Types: MISSION_ITEM

The legacy version of the protocol also supported MISSION_REQUEST for requesting
that a mission be sent as a sequence of MISSION_ITEM messages.
Both MISSION_REQUEST and MISSION_ITEM messages are now deprecated, and
should no longer be sent. If MISSION_REQUEST is received the system should
instead respond with MISSION_ITEM_INT items (as though it received MISSION_
REQUEST_INT).

Frames & Positional Information

By convention, mission items use param5, param6, param7 for positional in-
formation when needed (and otherwise as “free use” parameters). The table
below shows that the positional parameters can be local (x, y, z), global (lati-
tude, longitude, altitude), and also the data type used to store the parameters
in the MISSION_ITEM_INT message.

Table 39: Positional Parameters

param type Local Global
param5 int32_t x Latitude
param6 int32_t y Longitude
param7 float z Altitude (global - relative or absolute)

68

https://mavlink.io/en/messages/common.html#MISSION_ITEM_REACHED
https://mavlink.io/en/messages/common.html#MAV_MISSION_TYPE
http://mavlink.io/en/services/mission.html#mission_types
https://mavlink.io/en/messages/common.html#MAV_MISSION_RESULT
https://mavlink.io/en/services/mission.html#MISSION_ACK
https://mavlink.io/en/services/mission.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#mav_commands
http://mavlink.io/en/services/mission.html#mavlink_commands
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
https://mavlink.io/en/messages/common.html#MISSION_REQUEST
https://mavlink.io/en/messages/common.html#MISSION_ITEM
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
https://mavlink.io/en/services/mission.html#MISSION_REQUEST_INT
https://mavlink.io/en/services/mission.html#MISSION_REQUEST_INT

Mission Protocol RAS-A IOP

The coordinate frame of positional parameters is defined in the MISSION_ITEM_
INT.frame field using a MAV_FRAME value.
The global frames are prefixed with MAV_FRAME_GLOBAL_*. Mission items should
use frame variants that have the suffix _INT: e.g. MAV_FRAME_GLOBAL_RELATIVE_
ALT_INT, MAV_FRAME_GLOBAL_INT, MAV_FRAME_GLOBAL_TERRAIN_ALT_INT. When using
these frames, latitude and longitude values must be encoded by multiply-
ing the degrees by 1E7 (e.g. the latitude 69.69000000 would be sent as
69.69000000x1E7 = 696900000). Using int32 of degrees * 10^7 has higher
resolution than could be achieved with a single floating point.
A number of local frames are also specified. Local frame position values that
are sent in integer field parameters must be encoded as position in meters x
1E4 (e.g. 5m would be encoded and sent as 50000). If sent in messages float
parameter fields the value should be sent as-is.
Don’t use the non-INT global frames in mission items (e.g. MAV_FRAME_GLOBAL_
RELATIVE_ALT). These are intended to be used with messages that have float
fields for positional information, e.g.: MISSION_ITEM (deprecated), COMMAND_LONG.
If these frames are used, position values should be sent unencoded (i.e. no
need to multiply by 1E7).
As above, in theory if a global non-INT frame variant is set for a MISSION_ITEM_
INT the position value should be sent as-is (not encoded). This will result in the
value being rounded when it is sent in the integer value, which will make the
value unusable. In practice, many systems will assume you have encoded the
value, but you should test this for your particular flight stack. Better just to use
the correct frames!
Don’t use MAV_FRAME_MISSION for mission items that contain positional data; this
does not correspond to any particular real frame, and so will be ambiguous.
MAV_FRAME_MISSION should be used for mission items that use params5 and param6
for other purposes.

Param 5, 6 For Non-Positional Data

Param5, param6, param7 may also be used for non-positional information. In
this case the MISSION_ITEM_INT.frame should be set to MAV_FRAME_MISSION (this is
equivalent to say “the frame data is irrelevant”).
As param5 and param6 are sent in integer fields, generally you should design
mission items/MAV_CMDs such that these only include integer data (and are
sent as-is/unscaled). If these must be used for real numbers and scaling is
required, then this must be noted in the mission item itself.

69

https://mavlink.io/en/services/mission.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#MAV_FRAME_MISSION
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
https://mavlink.io/en/messages/common.html#MAV_FRAME_MISSION

Mission Protocol RAS-A IOP

Operations

This section defines all the protocol operations.

Upload a Mission to the Vehicle Uploading a mission can be performed
from a ground control station or from a different device / vehicle. The diagram
below shows the communication sequence to upload a mission to a drone (as-
suming all operations succeed).
Mission update must be robust! A new mission should be fully uploaded and
accepted before the old mission is replaced/removed.
In more detail, the sequence of operations is:
1. GCS sends MISSION_COUNT including the number of mission items to be up-
loaded (count).

• A timeout must be started for the GCS to wait on the response from
Drone (MISSION_REQUEST_INT).

2. Drone receives a message and responds with MISSION_REQUEST_INT request-
ing the first mission item (seq==0).

• A timeout must be started for the Drone to wait on the MISSION_ITEM_
INT response from GCS.

3. GCS receives MISSION_REQUEST_INT and responds with the requested mis-
sion item in a MISSION_ITEM_INT message.

4. Drone and GCS repeat the MISSION_REQUEST_INT/MISSION_ITEM_INT cycle, it-
erating seq until all items are uploaded (seq==count-1).

5. After receiving the last mission item the drone responds with MISSION_ACK
with the type of MAV_MISSION_ACCEPTED indicating mission upload comple-
tion/success.

• The drone should set the new mission to be the current mission, dis-
carding the original data.

• The drone considers the upload complete.
6. GCS receives MISSION_ACK containing MAV_MISSION_ACCEPTED to indicate the
operation is complete.

Note:
• A timeout is set for every message that requires a response (e.g. MISSION_

REQUEST_INT). If the timeout expires without a response being received then
the request must be resent.

• Mission items must be received in order. If an item is received out-of-
sequence the expected item should be re-requested by the vehicle (the
out-of-sequence item is dropped).

70

https://mavlink.io/en/messages/common.html#MISSION_COUNT
https://mavlink.io/en/services/mission.html#MISSION_REQUEST_INT
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
https://mavlink.io/en/services/mission.html#MISSION_ACK
https://mavlink.io/en/messages/common.html#MAV_MISSION_ACCEPTED

Mission Protocol RAS-A IOP

Figure 10: Mission Upload Communication Sequence Diagram

71

Mission Protocol RAS-A IOP

• An error can be signaled in response to any request using a MISSION_ACK
message containing an error code. This must cancel the operation and
restore the mission to its previous state. For example, the drone might
respond to the MISSION_COUNT request with a MAV_MISSION_NO_SPACE if there
isn’t enough space to upload the mission.

• The sequence above shows the mission items packaged in MISSION_ITEM_
INT messages. Protocol implementations must also support MISSION_ITEM
and MISSION_REQUEST in the same way.

• Uploading an empty mission (MISSION_COUNT is 0) has the same effect as
clearing the mission.

Download a Mission from the Vehicle The diagram below shows the com-
munication sequence to download a mission from a drone (assuming all oper-
ations succeed).
The sequence is similar to that for uploading a mission. The main difference
is that the client (e.g. GCS) sends MISSION_REQUEST_LIST, which triggers the au-
topilot to respond with the current count of items. This starts a cycle where the
GCS requests mission items, and the drone supplies them.
Note:

• A timeout is set for every message that requires a response (e.g. MISSION_
REQUEST_INT). If the timeout expires without a response being received then
the request must be resent.

• Mission items must be received in order. If an item is received out-of-
sequence the expected item should be re-requested by the GCS (the out-
of-sequence item is dropped).

• An error can be signaled in response to any request using a MISSION_ACK
message containing an error code. This must cancel the operation.

• The sequence above shows the mission items packaged in MISSION_ITEM_
INT messages. Protocol implementations must also support MISSION_ITEM
and MISSION_REQUEST in the same way.

Set Current Mission Item The diagram below shows the communication
sequence to set the current mission item.
In more detail, the sequence of operations is:
1. GCS/App sends MISSION_SET_CURRENT, specifying the new sequence number
(seq).

2. Drone receives a message and attempts to update the current mission
sequence number.

• On success, the Drone must broadcast a MISSION_CURRENT message
containing the current sequence number (seq).

72

https://mavlink.io/en/services/mission.html#MISSION_ACK
https://mavlink.io/en/messages/common.html#MISSION_COUNT
https://mavlink.io/en/messages/common.html#MAV_MISSION_NO_SPACE
http://mavlink.io/en/services/mission.html#mavlink_commands
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
https://mavlink.io/en/messages/common.html#MISSION_ITEM
https://mavlink.io/en/messages/common.html#MISSION_REQUEST
https://mavlink.io/en/messages/common.html#MISSION_COUNT
https://mavlink.io/en/messages/common.html#MISSION_REQUEST_LIST
https://mavlink.io/en/services/mission.html#MISSION_ACK
http://mavlink.io/en/services/mission.html#mavlink_commands
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
https://mavlink.io/en/services/mission.html#MISSION_ITEM_INT
https://mavlink.io/en/messages/common.html#MISSION_ITEM
https://mavlink.io/en/messages/common.html#MISSION_REQUEST
https://mavlink.io/en/messages/common.html#MISSION_SET_CURRENT
https://mavlink.io/en/messages/common.html#MISSION_CURRENT

Mission Protocol RAS-A IOP

Figure 11: Mission Download Communication Sequence Diagram

73

Mission Protocol RAS-A IOP

Figure 12: Mission Setting Communication Sequence Diagram

• On failure, the Drone must broadcast a STATUSTEXT with a MAV_SEVERITY
and a string stating the problem. This may be displayed in the UI of
receiving systems.

Notes:
• There is no specific timeout on the MISSION_SET_CURRENT message.
• The acknowledgment of the message is via broadcast of mission/system
status, which is not associated with the original message. This differs
from error handling in other operations. This approach is used because
the success/failure is relevant to all mission-handling clients.

Monitor Mission Progress GCS/developer API can monitor progress by han-
dling the appropriate messages sent by the drone:

• The vehicle must broadcast a MISSION_ITEM_REACHED) message whenever a
new mission item is reached. The message contains the seq number of
the current mission item.

• The vehicle must also broadcast a MISSION_CURRENT message if the current
mission item is changed.

Clear Missions The diagram below shows the communication sequence to
clear the mission from a drone (assuming all operations succeed).
In more detail, the sequence of operations is:
1. GCS/API sends MISSION_CLEAR_ALL

74

https://mavlink.io/en/messages/common.html#STATUSTEXT
https://mavlink.io/en/messages/common.html#MAV_SEVERITY
https://mavlink.io/en/messages/common.html#MISSION_ITEM_REACHED
https://mavlink.io/en/messages/common.html#MISSION_CURRENT
https://mavlink.io/en/messages/common.html#MISSION_CLEAR_ALL

Mission Protocol RAS-A IOP

Figure 13: Mission Clearance Communication Sequence Diagram

75

Mission Protocol RAS-A IOP

• A timeout is started for the GCS to wait on MISSION_ACK from Drone.
2. Drone receives the message, and clears the mission from storage.
3. Drone responds with MISSION_ACK with the result type of MAV_MISSION_

ACCEPTED MAV_MISSION_RESULT.
4. GCS receives MISSION_ACK and clears its own stored information about
the mission. The operation is now complete.

Note:
• A timeout is set for every message that requires a response (e.g. MISSION_

CLEAR_ALL). If the timeout expires without a response being received then
the request must be resent.

• An error can be signaled in response to any request (in this case, just
MISSION_CLEAR_ALL) using a MISSION_ACK message containing an error code.
This must cancel the operation. The GCS record of the mission (if any)
should be retained.

Canceling Operations The above mission operations may be canceled by
responding to any request (e.g. MISSION_REQUEST_INT) with a MISSION_ACK mes-
sage containing the MAV_MISSION_OPERATION_CANCELLED error.
Both systems should then return themselves to the idle state (if the system
does not receive the cancellation message it will resend the request; the recip-
ient will then be in the idle state and may respond with an appropriate error for
that state).

Operation Exceptions

Timeouts and Retries A timeout should be set for all messages that require
a response. If the expected response is not received before the timeout then
the message must be resent. If no response is received after a number of
retries then the client must cancel the operation and return to an idle state.
The recommended timeout values before resending, and the number of retries
are:

• Timeout (default): 1500 ms
• Timeout (mission items): 250 ms.
• Retries (max): 5

Errors/Completion All operations complete with a MISSION_ACKmessage con-
taining the result of the operation (MAV_MISSION_RESULT) in the type field.

76

https://mavlink.io/en/services/mission.html#MISSION_ACK
https://mavlink.io/en/messages/common.html#MAV_MISSION_ACCEPTED
https://mavlink.io/en/messages/common.html#MAV_MISSION_ACCEPTED
https://mavlink.io/en/messages/common.html#MAV_MISSION_RESULT
https://mavlink.io/en/services/mission.html#MISSION_ACK
https://mavlink.io/en/services/mission.html#MISSION_ACK
https://mavlink.io/en/messages/common.html#MAV_MISSION_RESULT

Mission Protocol RAS-A IOP

On successful completion, the message must contain type of MAV_MISSION_
ACCEPTED; this is sent by the system that is receiving the command/data
(e.g. the drone for mission upload or the GCS for mission download).
An operation may also complete with an error - MISSION_ACK.type set to MAV_
MISSION_ERROR or some other error code in MAV_MISSION_RESULT. This can occur in
response to any message/anywhere in the sequence.
Errors are considered unrecoverable. If an error is sent, both ends of the system
should reset themselves to the idle state and the current state of the mission
on the vehicle should be unaltered.
Note:

• timeout are not considered errors.
• Out-of-sequence messages in mission upload/download are recoverable,
and are not treated as errors.

Mission File Formats

The de facto standard file format for exchanging missions/plans is discussed in:
File Formats > Mission Plain-Text File Format.

Mission Command Detail

This section is for clarifications and additional information about common mis-
sion items. In particular it is intended for cases that are difficult to document
in the specification XML, or when images will much better describe expected
behavior.

Loiter Commands (MAV_CMD_NAV_LOITER_*) Loiter commands are provided to
allow a vehicle to hold at a location for a specified time or number of turns,
until it reaches the specified altitude, or indefinitely. Multicopter vehicles stop
at the specified point (within a vehicle-specific acceptance radius that is not
set by the mission item). Forward-moving vehicles (e.g. fixed-wing) circle the
point with the specified radius/direction.
The commands are:

• MAV_CMD_NAV_LOITER_TIME - Loiter at specified location for a given amount
of time after reaching the location.

• MAV_CMD_NAV_LOITER_TURNS - Loiter at specified location for a given number
of turns.

• MAV_CMD_NAV_LOITER_TO_ALT - Loiter at specified location until desired alti-
tude is reached.

• MAV_CMD_NAV_LOITER_UNLIM - Loiter at specified location for an unlimited
amount of time, yawing to face a given direction.

77

https://mavlink.io/en/messages/common.html#MAV_MISSION_ACCEPTED
https://mavlink.io/en/messages/common.html#MAV_MISSION_ACCEPTED
https://mavlink.io/en/messages/common.html#MAV_MISSION_ERROR
https://mavlink.io/en/messages/common.html#MAV_MISSION_ERROR
https://mavlink.io/en/messages/common.html#MAV_MISSION_RESULT
http://mavlink.io/en/file_formats/#mission_plain_text_file
https://mavlink.io/en/messages/common.html#MAV_CMD_NAV_LOITER_TO_ALT

Mission Protocol RAS-A IOP

The location and fixed-wing loiter radius parameters are common to all com-
mands:

Table 40: Fixed-wing Loiter and Location Param-
eters I

Param Description Units
3: Radius Radius around the waypoint. If positive

loiter clockwise, else counter-clockwise
m

5: Latitude Latitude
6: Longitude Longitude
7: Altitude Altitude m

The loiter time and turns are set in param 1 for the respective messages. The
direction of the loiter for MAV_CMD_NAV_LOITER_UNLIM can be set using param4 (Yaw).
The remaining parameters (xtrack and heading) apply only to forward flying
aircraft (not multicopters!)
Xtrack and heading define the location at which a forward flying (fixed wing)
vehicle will exit the loiter circle, and its path to the next waypoint (these apply
only to apply to only MAV_CMD_NAV_LOITER_TIME and MAV_CMD_NAV_LOITER_TURNS).

Table 41: Fixed-wing Loiter and Location Param-
eters II

Param Description Units
2: Heading
Required

Leave loiter circle only once heading
towards the next waypoint (0 = False)

min:0. max:1,
increment:1

4: Xtrack
Location

Sets xtrack path or exit location: 0 for the
vehicle to converge towards the center
xtrack when it leaves the loiter (the line
between the centers of the current and next
waypoint), 1 to converge to the direct line
between the location that the vehicle exits
the loiter radius and the next waypoint.
Otherwise the angle (in degrees) between
the tangent of the loiter circle and the
center xtrack at which the vehicle must
leave the loiter (and converge to the center
xtrack). NaN to use the current system
default xtrack behavior.

The recommended values (and resulting paths) are those shown below.

78

Mission Protocol RAS-A IOP

Figure 14: Fixed-wing Loiter Configuration Recommendation I

The vehicle leaves the loiter after it reaches the desired number of turns or
time and based on both the heading required and xtrack params.
A heading required of 1 prevents the vehicle from exiting the loiter unless it
is heading towards the next waypoint (if 0 it can leave at any point provided
the other conditions are met). With this setting the vehicle can leave at any
point in the arc shown, provided it meets the other conditions (e.g. xtrack).
If necessary (i.e. it is not in the arc when the other conditions are met), the
vehicle will loop back around the loiter before it evaluates the xtrack condition.

Figure 15: Fixed-wing Loiter Configuration Recommendation II

The Xtrack parameter independently defines the path and exit location:
• xtrack=0: Exit the loiter circle and converge to the centre xtrack between

79

Mission Protocol RAS-A IOP

this and the next waypoint.
∘ If the heading required parameter is not set it will exit the loiter im-
mediately.

∘ Otherwise it will leave as soon as it is heading towards the next way-
point (which may also be immediately!)

• xtrack=1: Exit the loiter circle and fly/converge to the straight line be-
tween the exit point and the centre of the next waypoint (i.e. don’t con-
verge to the centre xtrack).

∘ If the heading required parameter is set it will exit the loiter as soon as
it is heading towards the next waypoint (which may be immediately!).

∘ If the heading required parameter is not set it will exit the loiter im-
mediately (note that this exit path does not make much sense unless
the heading parameter is set).

• xtrack=NaN: Exit the loiter using “system specific default behavior”.
∘ The vehicle must still respect the heading required param.
∘ Usually this is synonymous with xtrack=0

• xtrack=any other value: Exit the loiter when the vehicle heading (tangent)
makes the specified angle in degrees to the center xtrack. Converge to the
center xtrack. The vehicle must still respect the heading required param
(some xtrack values may not be possible with this condition true). This
allows callers to specify how quickly the vehicle converges to the center
xtrack. For example, the image below shows the vehicle exiting the loiter
at 30 degrees.

Figure 16: Fixed-wing Loiter Configuration Recommendation III

80

Mission Protocol RAS-A IOP

Plan File Format

This file format is not part of the MAVLink transfer, but is standardized as a
ground or vehicle side storage format. Future versions of the protocol might
adopt a file-based mission transfer which allows direct uploads in this form.
Plan files are stored in JSON file format and contain mission items and (optional)
geofence and rally-points. Below you can see the top level format of a Plan file.
This is “near-minimal” - a plan must contain at least one mission item. The plan
fence and rally points are also used in modes when no mission is running.
Plan File Format example:
{

"fileType": "Plan",
"geoFence": {

"circles": [
],
"polygons": [
],
"version": 2

},
"groundStation": "QGroundControl",
"mission": {
},
"rallyPoints": {

"points": [
],
"version": 2

},
"version": 1

}

The main fields are:
Table 42: Plan File Main Fields Description

Key Description
version The version for this file. Current version is 1.
fileType Must be “Plan”.
groundStation The name of the ground station which created this file

(here QGroundControl)
mission The mission associated with this flight plan.
geoFence (Optional) Geofence information for this plan.
rallyPoints (Optional) Rally/Safe point information for this plan.

81

Mission Protocol RAS-A IOP

Mission Object The structure of the mission object is shown below. The
items field contains a comma-separated list of mission items (it must contain
at least one mission item, as shown below). The list may be a mix of both
SimpleItem and ComplexItem objects.
Mission Object Structure example:

"mission": {
"cruiseSpeed": 15,
"firmwareType": 12,
"hoverSpeed": 5,
"items": [

{
"AMSLAltAboveTerrain": null,
"Altitude": 50,
"AltitudeMode": 0,
"autoContinue": true,
"command": 22,
"doJumpId": 1,
"frame": 3,
"params": [

15,
0,
0,
null,
47.3985099,
8.5451002,
50

],
"type": "SimpleItem"

}
],
"plannedHomePosition": [

47.3977419,
8.545594,
487.989

],
"vehicleType": 2,
"version": 2

},

The following values are required:

82

Mission Protocol RAS-A IOP

Table 43: Required Parameter Values for Mission
Object

Key Description
version The version for the mission object. Current version is

2.
firmwareType The firmware type for which this mission was created.

This is one of the MAV_AUTOPILOT enum values.
vehicleType The vehicle type for which this mission was created.

This is one of the MAV_TYPE enum values.
cruiseSpeed The default forward speed for Fixed wing or VTOL

vehicles (i.e. when moving between waypoints).
hoverSpeed The default forward speed for multi-rotor vehicles.
items The list of mission item objects associated with the

mission . The list may contain either/both
SimpleItem and ComplexItem objects.

plannedHomePosition The planned home position is shown on the map and
used for mission planning when no vehicle is
connected. The array values shown above are (from
top): latitude, longitude and AMSL altitude.

The format of the simple and complex items is given below.

SimpleItem - Simple Mission Item A simple item represents a single
MAVLink MISSION_ITEM command.
Simple Item Definition example:

{
"AMSLAltAboveTerrain": null,
"Altitude": 50,
"AltitudeMode": 0,
"autoContinue": true,
"command": 22,
"doJumpId": 1,
"frame": 3,
"params": [

15,
0,
0,
null,
47.3985099,
8.5451002,
50

83

https://mavlink.io/en/messages/common.html#MAV_AUTOPILOT
https://mavlink.io/en/services/heartbeat.html#MAV_TYPE
https://mavlink.io/en/messages/common.html#MISSION_ITEM

Mission Protocol RAS-A IOP

],
"type": "SimpleItem"

}

The field mapping is shown below.

Table 44: Simple Item Field Mapping

Key Description
type SimpleItem for a simple item
AMSLAltAboveTerrain Altitude value shown to the user.
Altitude
AltitudeMode
autoContinue MISSION_ITEM.autoContinue
command The command (MAV_CMD) for this mission item - see

MISSION_ITEM.command.
doJumpId The target id for the current mission item in DO_

JUMP commands. These are auto-numbered from
1.

frame MAV_FRAME (see MISSION_ITEM.frame)
params MISSION_ITEM.param1,2,3,4,x,y,z (values depend

on the particular MAV_CMD).

Complex Mission Items A complex item is a higher level encapsulation of
multiple MISSION_ITEM objects treated as a single entity.
There are currently three types of complex mission items:

• Survey
• Corridor Scan
• Structure Scan

Survey Scan Complex Mission Item
The object definition for a Survey complex mission item is given below.
{

"TransectStyleComplexItem": {
...

},
"angle": 0,
"complexItemType": "survey",
"entryLocation": 0,
"flyAlternateTransects": false,
"polygon": [

84

https://mavlink.io/en/messages/common.html#MISSION_ITEM
https://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/messages/common.html#MISSION_ITEM
https://mavlink.io/en/services/mission.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#MISSION_ITEM
https://mavlink.io/en/messages/common.html#MISSION_ITEM
https://mavlink.io/en/messages/common.html#mav_commands

Mission Protocol RAS-A IOP

[
-37.75170619863631,
144.98414811224316

],
...
[

-37.75170619863631,
144.99457681259048

]
],
"type": "ComplexItem",
"version": 4

},

Complex items have these values associated with them:
Table 45: Survey Complex Mission Key Values

Key Description
version The version number for this survey definition.

Current version is 3.
type ComplexItem (this is a complex item).
complexItemType survey
TransectStyleComplexItem The common base definition for Survey and

CorridorScan complex items.
angle The angle for the transect paths (degrees).
entryLocation ?
flyAlternateTransects If true, the vehicle will skip every other

transect and then come back at the end and
fly these alternates. This can be used for fixed
wing aircraft when the turnaround would be
too acute for the vehicle to make the turn.

polygon The polygon array which represents the
polygonal survey area. Each point is a latitude,
longitude pair for a polygon vertex.

Corridor Scan Complex Mission Item
The object definition for a CorridorScan complex mission item is given below.

{
"CorridorWidth": 50,
"EntryPoint": 0,
"TransectStyleComplexItem": {

...

85

Mission Protocol RAS-A IOP

},
},
"complexItemType": "CorridorScan",
"polyline": [

[
-37.75234887156983,
144.9893624624168

],
...
[

-37.75491914850321,
144.9893624624168

]
],
"type": "ComplexItem",
"version": 2

},

Table 46: CorridorScan Complex Mission Key Val-
ues

Key Description
version The version for this CorridorScan definition.

Current version is 3.
type ComplexItem (this is a complex item).
complexItemType CorridorScan
CorridorWidth ?
EntryPoint ?
TransectStyleComplexItem The common base definition for Survey and

CorridorScan complex items.
polyline ?

Structure Scan Complex Mission Item
The object definition for a StructureScan complex mission item is given below.

{
"Altitude": 50,
"CameraCalc": {

"AdjustedFootprintFrontal": 25,
"AdjustedFootprintSide": 25,
"CameraName": "Manual (no camera specs)",
"DistanceToSurface": 10,
"DistanceToSurfaceRelative": true,

86

Mission Protocol RAS-A IOP

"version": 1
},
"Layers": 1,
"StructureHeight": 25,
"altitudeRelative": true,
"complexItemType": "StructureScan",
"polygon": [

[
-37.753184359536355,
144.98879374063998

],
...
[

-37.75408368012594,
144.98879374063998

]
],
"type": "ComplexItem",
"version": 2

}

Table 47: StructureScan Complex Mission Key
Values

Key Description
version The version for this StructureScan definition. Current

version is 2.
type ComplexItem (this is a complex item).
complexItemType StructureScan
Altitude ?
CameraCalc ?
Layers ?
StructureHeight ?
altitudeRelative true: altitude is relative to home, false: altitude is

AMSL.
polygon ?

TransectStyleComplexItem
TransectStyleComplexItem contains the common base definition for survey and
CorridorScan complex items.
The object definition for a TransectStyleComplexItem complex mission item is
given below.

87

Mission Protocol RAS-A IOP

"TransectStyleComplexItem": {
"CameraCalc": {

...
},
"CameraTriggerInTurnAround": true,
"FollowTerrain": false,
"HoverAndCapture": false,
"Items": [

...
],
"Refly90Degrees": false,
"TurnAroundDistance": 10,
"VisualTransectPoints": [

[
-37.75161626657736,
144.98414811224316

],
...
[

-37.75565155437309,
144.99438539496475

]
],
"version": 1

},

Table 48: TransectStyle Complex Mission Key Val-
ues

Key Description
version The version for this TransectStyleComplexItem

definition. Current version is 1.
CameraCalc ?
CameraTriggerIn-
TurnAround

? (boolean)

FollowTerrain ? (boolean)
HoverAndCapture ? (boolean)
Items ?
Refly90Degrees ? (boolean)
TurnAroundDistance The distance to fly past the polygon edge prior to

turning for the next transect.
VisualTransectPoints ?

88

Mission Protocol RAS-A IOP

CameraCalc Complex Mission Item
The CameraCalc complex mission item contains camera information used for a
survey, corridor or structure scan.
The object definition for a CameraCalc complex mission item is given below:

"CameraCalc": {
"AdjustedFootprintFrontal": 272.4,
"AdjustedFootprintSide": 409.2,
"CameraName": "Sony ILCE-QX1",
"DistanceToSurface": 940.6896551724138,
"DistanceToSurfaceRelative": true,
"FixedOrientation": false,
"FocalLength": 16,
"FrontalOverlap": 70,
"ImageDensity": 25,
"ImageHeight": 3632,
"ImageWidth": 5456,
"Landscape": true,
"MinTriggerInterval": 0,
"SensorHeight": 15.4,
"SensorWidth": 23.2,
"SideOverlap": 70,
"ValueSetIsDistance": false,
"version": 1

},

Key Description
version The version for this CameraCalc definition.

Current version is 1.
AdjustedFootprintFrontal ?
AdjustedFootprintSide ?
DistanceToSurface ? Units?
DistanceToSurfaceRelative ?
CameraName Name of camera being used (must correspond

to one of the cameras known to
QGroundControl or: Manual (no camera specs)
for manual setup, Custom Camera for a
custom setup. The keys listed after this point
are not specified for a “Manual” camera
definition.

FixedOrientation ? (boolean)
FocalLength Focal length of camera lens in millimeters.
FrontalOverlap Percentage of frontal image overlap.
ImageDensity ?

89

Mission Protocol RAS-A IOP

Key Description
ImageHeight Image height in px
ImageWidth Image width in px
Landscape true: Camera installed in landscape

orientation on vehicle, false: Camera installed
in portrait orientation on vehicle.

MinTriggerInterval ?
SensorHeight Sensor height in millimeters.
SensorWidth Sensor width in millimeters.
SideOverlap Percentage of side image overlap.
ValueSetIsDistance ? (boolean)

Table 25: CameraCalc Complex Mission Item Key Values

GeoFence Geofence information is optional. The plan can contain an arbi-
trary number of geofences defined in terms of polygons and circles.
A minimal GeoFence definition is given below:

"geoFence": {
"circles": [
],
"polygons": [
],
"version": 2

},

The fields are:

Key Description
version The version number for the geofence plan format.

The documented version is 2.
circles List containing circle geofence definitions (comma

separated).
polygons List containing polygon geofence definitions (comma

separated).

Table 26: GeoFence Key Values

Circle Geofence Each circular geofence is defined in a separate item, as
shown below (multiple comma-separated items can be defined). The items de-
fine the centre and radius of the circle, and whether or not the specific geofence
is activated.

90

Mission Protocol RAS-A IOP

Circle GeoFence Definition:
{

"circle": {
"center": [

47.39756763610029,
8.544649762407738

],
"radius": 319.85

},
"inclusion": true,
"version": 1

}

The fields are:

Key Description
version The version number for the geofence “circle” plan

format. The documented version is 1.
circle The definition of the circle. Includes centre (latitude,

longitude) and radius as shown above.
inclusion Whether or not the geofence is enabled (true) or

disabled.

Table 27: Circle GeoFence Key Values

Polygon Geofence Each polygon geofence is defined in a separate item, as
shown below (multiple comma-separated items can be defined). The geofence
includes a set of points defined with a clockwise winding (i.e. they must enclose
an area).
The object definition for a polygon geofence is given below:

{
"inclusion": true,
"polygon": [

[
47.39807773798406,
8.543834631785785

],
[

47.39983519888905,
8.550024648373267

],
[

91

Mission Protocol RAS-A IOP

47.39641100087146,
8.54499282423751

],
[

47.395590322265186,
8.539435808992085

]
],
"version": 1

}
],
"version": 2

}

The fields are:
Table 52: Polygon GeoFence Key Values

Key Description
version The version number for the geofence “polygon” plan

format. The documented version is 2.
polygon A list of points for the polygon. Each point contains a

latitude and longitude. The points are ordered in a
clockwise winding.

inclusion Whether or not the geofence is enabled (true) or
disabled.

inclusion Whether or not the geofence is enabled (true) or
disabled.

Rally Points Rally point information is optional. The plan can contain an
arbitrary number of rally points, each of which has a latitude, longitude, and
altitude (above home position).
The object definition for two rallypoints is given below:

"rallyPoints": {
"points": [

[
47.39760401,
8.5509154,
50

],
[

47.39902017,

92

Parameter Protocol RAS-A IOP

8.54263274,
50

]
],
"version": 2

}

The fields are:
Table 53: RallyPoints Key Values

Key Description
version The version number for the rally point plan format.

The documented version is 2.
points A list of rally points.

Parameter Protocol
The parameter microservice is used to exchange configuration settings be-
tween MAVLink components.
Each parameter is represented as a key/value pair. The key is usually the
human-readable name of the parameter (maximum of 16 characters) and a
value - which can be one of a number of types.
The key/value pair has a number of important properties:

• The human-readable name is small but useful (it can encode parameter
names from which users can infer the purpose of the parameter).

• Unknown autopilots that implement the protocol can be supported “out of
the box”.

• A GCS does not have to know in advance what parameters exist on a re-
mote system (although in practice a GCS can provide a better user expe-
rience with additional parameter metadata like maximum and minimum
values, default values, etc.).

• Adding a parameter only requires changes to the system with parame-
ters. A GCS that loads the parameters, and the MAVLink communication
libraries, should not require any changes.

Message/Enum Summary

93

http://mavlink.io/en/messages/common.html#MAV_PARAM_TYPE

Parameter Protocol RAS-A IOP

Message Description
PARAM_REQUEST_LIST Request all parameters. The recipient broadcasts all

parameter values using PARAM_VALUE.
PARAM_REQUEST_READ Request a single parameter. The recipient broadcasts

the specified parameter value using PARAM_VALUE.
PARAM_SET Send command to set a specified parameter to a

value. After the value has been set (whether
successful or not), the recipient should broadcast the
current value using PARAM_VALUE.

PARAM_VALUE The current value of a parameter, broadcast in
response to a request to get one or more parameters
(PARAM_REQUEST_READ, PARAM_REQUEST_LIST) or whenever
a parameter is set (PARAM_SET) or changes.

Table 30: Message

Enum Description
MAV_PARAM_TYPE PARAM_SET and PARAM_VALUE store/encode parameter

values within a float field. This type conveys the real
type of the encoded parameter value, e.g. MAV_PARAM_
TYPE_UINT16, MAV_PARAM_TYPE_INT32, etc.

Table 31: Enum

Parameter Encoding

Parameter names/ids are set in the param_id field of messages where they
are used. The param_id string can store up to 16 characters. The string is
terminated with a NULL (\0) character if there are less than 16 human-readable
chars, and without a null termination byte if the length is exactly 16 chars.
Values are byte-wise encoded within the param_value field, an IEE754 single-
precision, 4 byte, floating point value. The param_type (MAV_PARAM_TYPE) is used
to indicate the actual type of the data so that it can be decoded by the recipient.
Supported types are: 8, 16, 32 and 64-bit signed and unsigned integers, and
32 and 64-bit floating point numbers.
A byte-wise conversion is needed, rather than a simple cast, to enable larger
integers to be exchanged (e.g. 1E7 scaled integers can be useful for encoding
some types of data, but lose precision if cast directly to floats).

94

https://mavlink.io/en/messages/common.html#PARAM_REQUEST_LIST
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/messages/common.html#PARAM_REQUEST_READ
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/messages/common.html#PARAM_SET
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/messages/common.html#PARAM_REQUEST_READ
https://mavlink.io/en/messages/common.html#PARAM_REQUEST_LIST
https://mavlink.io/en/messages/common.html#PARAM_SET
https://mavlink.io/en/messages/common.html#MAV_PARAM_TYPE
https://mavlink.io/en/messages/common.html#PARAM_SET
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/messages/common.html#MAV_PARAM_TYPE

Parameter Protocol RAS-A IOP

Mavgen C API The C API provides a convenient union that allows you to
bytewise convert between any of the supported types: mavlink_param_union_
t (mavlink_types.h). For example, below we show how you can set the union
integer field but pass the float value to the sending function:
mavlink_param_union_t param;
int32_t integer = 20000;
param.param_int32 = integer;
param.type = MAV_PARAM_TYPE_INT32;
// Then send the param by providing the float bytes to the send function
mavlink_msg_param_set_send(xxx, xxx, param.param_float, param.type, xxx);

Mavgen Python API (Pymavlink) Pymavlink does not include special sup-
port to byte-wise encode the non-float data types (unsurprisingly, because
Python effectively “hides” low level data types from users). When working
with a system that supports non-float parameters you will need to do the en-
coding/decoding yourself when sending and receiving messages.
There is a good example of how to do this in the Pymavlinkmavparm.pymodule
(see MAVParmDict.mavset()).

Parameter Caching

AGCS or other componentmay choose tomaintain a cache of parameter values
for connected components/systems, in order to reduce the time required to
display values and reduce MAVLink traffic.
The cache can be populated initially by first reading the full parameter list at
least once, and then updated by monitoring for PARAM_VALUE messages (which
are emitted whenever a parameter is written or otherwise changed).
Cache synchronisation is not guaranteed; a component may miss update mes-
sages due to parameter changes by other components.

Multi-System and Multi-Component Support

MAVLink supports multiple systems in parallel on the same link, and multiple
MAVLink enabled components within a system.
Requests to get and set parameters can be sent to individual systems or com-
ponents. To get a complete parameter list from a system, send the request
parameter message with target_component set to MAV_COMP_ID_ALL.
All components must respond to parameter request messages addressed to
their ID or the ID MAV_COMP_ID_ALL.

95

https://github.com/mavlink/c_library_v2/blob/master/mavlink_types.h
https://github.com/ArduPilot/pymavlink/blob/master/mavparm.py
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/messages/common.html#MAV_COMP_ID_ALL

Parameter Protocol RAS-A IOP

QGroundControl by default queries all components of the currently connected
system (it sends ID MAV_COMP_ID_ALL).

Limitations

Parameters Table is Invariant The protocol requires that the parameter set
does not change during normal operation/after parameters have been read.
If a component can add parameters during (or after) initial synchronization the
protocol cannot guarantee reliable/robust synchronization, because there is no
way to notify that the parameter set has changed and a new sync is required.
If working with a non-compliant component, the risk of problems when working
with parameters can be reduced (but not removed) if:

• The param_id is used to read parameters where possible (the mapping of
param_index to a particular parameter might change on systems where
parameters can be added/removed).

• PARAM_VALUE.param_count is monitored and the parameter set re-
synchronised on change.

Parameter Synchronisation Can Fail A GCS (or other component) that
wants to cache parameters with a component and keep them synchronised,
should first get all parameters, and then track any new parameter changes by
monitoring for PARAM_VALUEmessages (updating their internal list appropriately).
This works for the originator of a parameter change, which can resend the
request if an expected PARAM_VALUE is not received. This approach may fail for
components that did not originate the change, as they will not know about
updates they do not receive (i.e. if messages are dropped).
A component may mitigate this risk by, for example, sending the PARAM_VALUE
multiple times after a parameter is changed.

Parameter Operations

This section defines the state machine/message sequences for all parameter
operations.

Read All Parameters The read-all operation is started by sending the PARAM_
REQUEST_LIST message. The target component must start to broadcast the pa-
rameters individually in PARAM_VALUE messages after receiving this message.
The drone should allow a pause after sending each parameter to ensure that
the operation doesn’t consume all of the available link bandwidth (30 - 50 per-
cent of the bandwidth is reasonable).
The sequence of operations is:

96

https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/messages/common.html#PARAM_REQUEST_LIST
https://mavlink.io/en/messages/common.html#PARAM_REQUEST_LIST

Parameter Protocol RAS-A IOP

Figure 17: Read-All Operations Diagram

97

Parameter Protocol RAS-A IOP

1. GCS (client) sends PARAM_REQUEST_LIST specifying a target system/component.
• Broadcast addresses may be used. All targeted components should
respond with parameters (or ignore the request if they have none).

• The GCS is expected to accumulate parameters from all responding
systems.

• The timeout/retry behavior is GSC dependent.
2. The targeted component(s) should respond, sending all parameters indi-
vidually in PARAM_VALUE messages.

• Allow breaks between each message in order to avoid saturating the
link.

• Components with no parameters should ignore the request.
3. GCS starts timeout after each PARAM_VALUE message in order to detect
when parameters are no longer being sent (that the operation has com-
pleted).

Notes:
• The GCS/API may accumulate the received parameters for each compo-
nent and can determine if any are missing/not received (PARAM_VALUE con-
tains the total number of params and index of current param).

• Handling of missing params is GCS-dependent. QGroundControl, for ex-
ample, individually requests each missing parameter by index.

• If a component does not have any parameters then it will ignore a PARAM_
REQUEST_LIST request. The sender should simply timeout (after resending)
if no PARAM_VALUE is received.

Read Single Parameter A single parameter can be read by sending the
PARAM_REQUEST_READ message, as shown below:
The sequence of operations is:
1. GCS (client) sends PARAM_REQUEST_READ specifying either the parameter id
(name) or parameter index.

2. GCS starts timeout waiting for acknowledgment (in the form of a PARAM_
VALUE message).

3. Drone responds with PARAM_VALUE containing the parameter value. This is
a broadcast message (sent to all systems).

The drone may restart the sequence if the PARAM_VALUE acknowledgment is not
received within the timeout.
There is no formal way for the drone to signal when an invalid parameter is
requested (i.e. for a parameter name or id that does not exist). In this case the
drone should emit STATUSTEXT. The GCSmaymonitor for the specific notification,
but will otherwise fail the request after any timeout/resend cycle completes.

98

https://mavlink.io/en/messages/common.html#PARAM_REQUEST_LIST
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/messages/common.html#PARAM_REQUEST_READ
https://mavlink.io/en/messages/common.html#PARAM_REQUEST_READ
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/messages/common.html#STATUSTEXT

Parameter Protocol RAS-A IOP

Figure 18: Read Single Diagram

Write Parameters Parameters can be written individually by sending the
parameter name and value pair to the GCS, as shown:
The sequence of operations is:
1. GCS (client) sends PARAM_SET specifying the param name to update and its
new value (also target system/component and the param type).

2. GCS starts timeout waiting for acknowledgment (in the form of a PARAM_
VALUE message).

3. Drone writes parameters and responds by broadcasting a PARAM_VALUE
containing the updated parameter value to all components/systems.

4. The Drone must acknowledge the PARAM_SET by broadcasting a PARAM_
VALUE even if the write operation fails. In this case the PARAM_VALUE will
be the current/unchanged parameter value.

5. GCS should update the parameter cache (if used) with the new value.
6. The GCS may restart the sequence if the expected PARAM_VALUE is not re-
ceived within the timeout, or if the write operation fails (the value returned
in PARAM_VALUE does not match the value set).

The command MAV_CMD_DO_SET_PARAMETER is not part of the parameter protocol.
If implemented it can be used to set the value of a parameter using the enu-
meration of the parameter within the remote system is known (rather than the
id). This has no particular advantage over the parameter protocol methods.

99

https://mavlink.io/en/messages/common.html#PARAM_SET
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/services/parameter.html#PARAM_VALUE
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_PARAMETER

Parameter Protocol RAS-A IOP

Figure 19: Write Parameter Diagram

100

Parameter Protocol RAS-A IOP

List of parameters

The following list of parameters provide the required and optional parameters
under this IOP, according to the vehicles available functionality - i.e if the ve-
hicle provides the specified functionality, then the parameters that configure
that functionality should be exposed. These parameters should be accessible
and configurable through the Parameter Protocol. Note that this list can be
expanded on further iterations of the IOP, according to the requirements.

Name Type Description

Min >
Max
(Incr.) Default Units

GCS_LOSS_T INT32 GCS connection loss
time threshold. After this
amount of seconds
without datalink, the
GCS_LOSS_ACT mode
triggers

5 > 300
(1)

10 s

GCS_LOSS_
ACT

INT32 GCS connection loss
failsafe action. The GCS
connection loss failsafe
will only be entered after
a timeout, set by GCS_
LOSS_T in seconds. Once
the timeout occurs the
selected action will be
executed. Values: 0:
Disabled; 1: Hold; 2:
Return; 3: Land; 4:
Terminate; 5: Disarm.

0 > 6 (1) 0

LED_ILLUM_
MODE

UINT32 Defines the illumination
mode. Uses the
following BIT Flags:
Navigation lights on:
0x1; Navigation lights
strobe: 0x2; IR on: 0x4;
IR strobe: 0x8; White on:
0x10; White strobe:
0x20.

0x00

101

Parameter Protocol RAS-A IOP

Name Type Description

Min >
Max
(Incr.) Default Units

COM_OBS_
AVOID

INT32 Defines the obstacle
avoidance level. The
level of obstacle
avoidance is platform
specific, i.e. the
definition of what
represents this level
depends on how the
vehicle platform
implements it (proximity
to obstacles, speed,
etc.). Values: 0: Off; 1:
Low; 2: Medium; 3:
High.

0 > 4 (1) 0

RTX_
RETURN_ALT

FLOAT Minimum traversal
altitude above RTX
destination (defined by
RTX_TYPE). The vehicle
will ascend to this
altitude when Return
mode is engaged, unless
currently flying higher.

0 > MAX_
HAGL (0.5)

60.0 m

RTX_TYPE INT32 Return mode destination
and flight path (direct if
not specified). Values: 0:
Return to closest safe
point (home, rally point,
takeoff, GCS, planned
mission landing); 1:
Return to takeoff; 2:
Return to closest rally
point or home; 3: Return
to GCS or home if GCS
position not known; 4:
Return to mission start
via reverse path; 5.
Return to planned
mission landing along
mission path.

[0, 5] 0

102

Extended Parameter Protocol RAS-A IOP

Name Type Description

Min >
Max
(Incr.) Default Units

LOW_BAT_
ACT

INT32 Action the system take
at battery conditions.
Emergency level is
minimum battery
needed to land safely.
Critical level is minimum
battery needed to return
to RTX_TYPE and land
safely. Values: 0:
Warning (Alert User); 1:
Land immediately at
emergency; 2: Land at
critical; 3: Enter Return
mode at critical, land
immediately emergency
level

0 > 3 (1) 1

GND_SPD_
LIM

FLOAT Maximum ground speed.
If higher speeds are
commanded in a mission
they are capped at this
speed. Speed less than
0 indicates unlimited.

0 > Inf
(0.5)

12.0 m/s

MAX_HAGL FLOAT Maximum Height AGL.
Vehicles who cannot
compute HAGL, will use
height above home.
Values less than 0
indicates unlimited

0.0 > Inf
(0.5)

121.0 m

MAX_DIST_
RTX

FLOAT Maximum slant range to
RTX point specified by
RTX_TYPE. Value < 0
indicates disabled.

0 > Inf
(0.5)

-1.0 m

MAX_DIST_
GCS

FLOAT Maximum slant range to
GCS. Value < 0 indicates
disabled

0 > Inf
(0.5)

-1.0 m

Extended Parameter Protocol
The Extended Parameter Protocol is an extended version of the Parameter Pro-
tocol that adds support for larger custom parameter types e.g. strings. It can

103

Extended Parameter Protocol RAS-A IOP

be used to exchange configuration settings between MAVLink components, and
in particular configuration settings that may be more than just numeric values.
The protocol shares most of the same benefits and limitations of the original
protocol, and similar (but not identical) operation sequences. The main differ-
ence is that when writing a parameter the system emits one or more PARAM_
EXT_ACK messages (rather than PARAM_EXT_VALUE, as you would expect from the
original protocol). This allows the Extended Parameter Protocol to differentiate
between the case where a write fails (or is in progress) and the case where the
value update simply went missing.
The extensions were invented for the Camera Protocol, which uses them to
request/set parameter values specified in a Camera Definition File. At time of
writing the protocol is supported by QGroundControl for this purpose, but is not
otherwise supported by flight stacks.

Message/Enum Summary

Table 57: Message

Message Description
PARAM_EXT_REQUEST_LIST Request all parameters of this component. On

receiving this request, the requested component will
emit all parameter values using PARAM_EXT_VALUE.

PARAM_EXT_VALUE Emit the value of a parameter, following a PARAM_EXT_
REQUEST_LIST or PARAM_EXT_REQUEST_READ. The message
includes param_count and param_index which the
recipient can use to track received parameters and
re-request missing parameters after a timeout.

PARAM_EXT_REQUEST_READ Request the value of a specific parameter using
either its param_id or param_index. Expects a
response in a PARAM_EXT_VALUE.

PARAM_EXT_SET Set a parameter value. Expects immediate response
PARAM_EXT_ACK with result indicating success, failure,
or that the request is still in progress (PARAM_ACK_IN_
PROGRESS). If in progress, additional update PARAM_EXT_
ACK messages are expected.

PARAM_EXT_ACK Response from a PARAM_EXT_SET message, which
indicates whether the value was accepted (set),
failed, setting is still in progress, or that the specified
parameter is invalid/unsupported.

104

https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK
https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK
https://mavlink.io/en/messages/common.html#PARAM_EXT_VALUE
http://mavlink.io/en/services/camera_def.html
https://mavlink.io/en/messages/common.html#PARAM_EXT_REQUEST_LIST
https://mavlink.io/en/messages/common.html#PARAM_EXT_VALUE
https://mavlink.io/en/messages/common.html#PARAM_EXT_VALUE
https://mavlink.io/en/messages/common.html#PARAM_EXT_REQUEST_LIST
https://mavlink.io/en/messages/common.html#PARAM_EXT_REQUEST_LIST
https://mavlink.io/en/messages/common.html#PARAM_EXT_REQUEST_READ
https://mavlink.io/en/messages/common.html#PARAM_EXT_REQUEST_READ
https://mavlink.io/en/messages/common.html#PARAM_EXT_VALUE
https://mavlink.io/en/messages/common.html#PARAM_EXT_SET
https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK
https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK
https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK
https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK
https://mavlink.io/en/messages/common.html#PARAM_EXT_SET

Extended Parameter Protocol RAS-A IOP

Table 58: Enum

Enum Description
MAV_PARAM_EXT_TYPE Specifies the datatype of a MAVLink extended

parameter (parameter values are encoded within the
a char[128] array in the messages). This type
conveys the real type of the encoded parameter
value, e.g. MAV_PARAM_EXT_TYPE_REAL32.

PARAM_ACK Request acknowledgment status value, sent in an
PARAM_EXT_ACK as a response to a PARAM_EXT_SET
message. A request can be accepted, fail,
in-progress, or unsupported (indicating the specified
parameter does not exist or has an invalid value or
value type).

Parameter Encoding

Parameter names/ids are set in the param_id field of messages where they
are used. The param_id string can store up to 16 characters. The string is
terminated with a NULL (\0) character if there are less than 16 human-readable
chars, and without a null termination byte if the length is exactly 16 chars.
Names (as above) are the same as for the Parameter Protocol.
Values are byte-wise encodedwithin the param_value field, which is a char[128].
The param_type (MAV_PARAM_EXT_TYPE) is used to indicate the actual type of the
data so that it can be decoded by the recipient. Supported types are: 8, 16, 32
and 64-bit signed and unsigned integers, 32 and 64-bit floating point numbers,
and a “custom type” which may be used for e.g. strings.
The encoding is best described by example as shown below.

C Encoding/Decoding

To send the parameter, the data is written into a union structure then memcpy
used to copy the data into the message char[128] field.
The union structure might look like this:
MAVPACKED(
typedef struct {

union {
float param_float;
double param_double;
int64_t param_int64;
uint64_t param_uint64;

105

https://mavlink.io/en/messages/common.html#MAV_PARAM_EXT_TYPE
https://mavlink.io/en/messages/common.html#PARAM_ACK
https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK
https://mavlink.io/en/messages/common.html#PARAM_EXT_SET
https://mavlink.io/en/messages/common.html#MAV_PARAM_EXT_TYPE

Extended Parameter Protocol RAS-A IOP

int32_t param_int32;
uint32_t param_uint32;
int16_t param_int16;
uint16_t param_uint16;
int8_t param_int8;
uint8_t param_uint8;
uint8_t bytes[MAVLINK_MSG_PARAM_EXT_SET_FIELD_PARAM_VALUE_LEN];

};
uint8_t type;

}) param_ext_union_t;

To send the parameter, the data is written into the union value of the correct
type and then memcpy used to copy it to the message data.
// Create C object for message data and zero fill
mavlink_param_ext_set_t p;
memset(&p, 0, sizeof(mavlink_param_ext_set_t));

// Store type of data to be sent in message
p.param_type = /* Value for type from MAV_PARAM_EXT_TYPE */;

// Create union value to assign data to
param_ext_union_t union_value;

// Assign data to union value (usually in a case statement based on type).
union_value.param_uint16 = static_cast<uint16_t>(aUint16Value);

// memcpy the union bytes value into the message data array.
memcpy(&p.param_value[0], &union_value.bytes[0], MAVLINK_MSG_PARAM_EXT_SET_FIELD_PARAM_VALUE_LEN);

Receiving and decoding a parameter is even simpler:
// 'value' is the char[128] from the message
// 'param_type' is the param_type value from the message

// Create union value to assign data to
param_ext_union_t union_value;

// memcpy the received value into the union_value bytes field.
memcpy(union_value.bytes, value, MAVLINK_MSG_PARAM_EXT_SET_FIELD_PARAM_VALUE_LEN);

// Assign the union_value of correct type to a variable for use
switch (param_type) {

...
case MAV_PARAM_EXT_TYPE_INT16:

106

Extended Parameter Protocol RAS-A IOP

auto var = union_value.param_int16;
break;

...
}

QGroundControl provides real code examples here:
• Union structure: QGCCameraIO.h::param_ext_union_t
• Send a parameter (encode in char[128]): QGCCameraIO.cc::QGCCameraParamIO::_
sendParameter()

• Receive a parameter and get typed value: QGCCameraIO.cc::QGCCameraParamIO::_
valueFromMessage()

Parameter Caching

AGCS or other componentmay choose tomaintain a cache of parameter values
for connected components/systems, in order to reduce the time required to
display values and reduce MAVLink traffic.
The cache can be populated initially by first reading the full parameter list at
least once, and then updated by monitoring for PARAM_EXT_ACK messages with
PARAM_ACK_ACCEPTED (which are emitted whenever a parameter is successfully
written/changed).
A system may also monitor for PARAM_EXT_VALUE originating from other compo-
nents/systems requesting parameter values.
Cache synchronisation is not guaranteed; a component may miss parameter
update messages due to changes by other components.

Limitations

Parameters Table is Invariant The protocol requires that the parameter set
does not change during normal operation/after parameters have been read.
If a component can add parameters during (or after) initial synchronization the
protocol cannot guarantee reliable/robust synchronization, because there is no
way to notify that the parameter set has changed and a new sync is required.
When requesting parameters from such a components, the risk of problems
can be reduced (but not removed) if:

• The param_id is used to read parameters where possible (the mapping
of param_index to a particular parameter may change on systems where
parameters can be added/removed).

• PARAM_EXT_VALUE.param_countmay be monitored. If this changes the param-
eter set should be re-synchronised.

107

https://github.com/mavlink/qgroundcontrol/blob/master/src/Camera/QGCCameraIO.h
https://github.com/mavlink/qgroundcontrol/blob/master/src/Camera/QGCCameraIO.cc
https://github.com/mavlink/qgroundcontrol/blob/master/src/Camera/QGCCameraIO.cc
https://github.com/mavlink/qgroundcontrol/blob/master/src/Camera/QGCCameraIO.cc
https://github.com/mavlink/qgroundcontrol/blob/master/src/Camera/QGCCameraIO.cc
https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK
https://mavlink.io/en/messages/common.html#PARAM_EXT_VALUE
https://mavlink.io/en/messages/common.html#PARAM_EXT_VALUE

Extended Parameter Protocol RAS-A IOP

Parameter Synchronisation Can Fail A GCS (or other system) that wants
to cache parameters from a component and keep them synchronised should
first get all parameters, and then track changes by monitoring for PARAM_EXT_
ACK messages (updating their internal list appropriately).
This works for the originator of a parameter change, which can resend the
request if an expected PARAM_EXT_ACK is not received. This approach may fail
for components that did not originate the change, as they will not know about
updates they do not receive (i.e. if messages are dropped).
A component may mitigate this risk by, for example, sending the PARAM_EXT_ACK
multiple times after a parameter is changed.

Parameter Operations

This section defines the state machine/message sequences for all parameter
operations.

Read All Parameters The read-all operation is started by sending the PARAM_
EXT_REQUEST_LIST message. The target component must start to broadcast the
parameters individually in PARAM_EXT_VALUE messages after receiving this mes-
sage. The drone should allow a pause after sending each parameter to ensure
that the operation doesn’t consume all of the available link bandwidth (30 - 50
percent of the bandwidth is reasonable).
The sequence of operations is:
1. GCS (client) sends PARAM_EXT_REQUEST_LIST specifying a target sys-
tem/component.

• Broadcast addresses may be used. All targeted components should
respond with parameters (or ignore the request if they have none).

• The GCS is expected to accumulate parameters from all responding
systems.

• The timeout/retry behavior is GSC dependent.
2. The targeted component(s) should respond, sending all parameters indi-
vidually in PARAM_EXT_VALUE messages.

• Allow breaks between each message in order to avoid saturating the
link.

• Components with no parameters should ignore the request.
3. GCS starts timeout after each PARAM_EXT_VALUE message in order to detect
when parameters are no longer being sent (that the operation has com-
pleted).

Notes:

108

https://mavlink.io/en/messages/common.html#PARAM_EXT_REQUEST_LIST
https://mavlink.io/en/messages/common.html#PARAM_EXT_REQUEST_LIST
https://mavlink.io/en/messages/common.html#PARAM_EXT_VALUE
https://mavlink.io/en/messages/common.html#PARAM_EXT_REQUEST_LIST
https://mavlink.io/en/messages/common.html#PARAM_EXT_VALUE

Extended Parameter Protocol RAS-A IOP

Figure 20: Read All Parameters

• The GCS/API may accumulate the received parameters for each compo-
nent and can determine if any are missing/not received (PARAM_EXT_VALUE
contains the total number of params and index of current param).

• Handling of missing params is GCS-dependent. QGroundControl, for ex-
ample, individually requests each missing parameter by index.

• If a component does not have any parameters then it will ignore a PARAM_
EXT_REQUEST_LIST request. The sender should simply timeout (after resend-
ing) if no PARAM_EXT_VALUE is received.

Read Single Parameter A single parameter can be read by sending the
PARAM_EXT_REQUEST_READ message, as shown below:
The sequence of operations is:
1. GCS (client) sends PARAM_EXT_REQUEST_READ specifying either the parameter
id (name) or parameter index.

2. GCS starts timeout waiting for acknowledgment (in the form of a PARAM_
EXT_VALUE message).

3. Drone responds with PARAM_EXT_VALUE containing the parameter value. This
is a broadcast message (sent to all systems).

The drone may restart the sequence if the PARAM_EXT_VALUE acknowledgment is
not received within the timeout.

109

https://mavlink.io/en/messages/common.html#PARAM_EXT_REQUEST_READ
https://mavlink.io/en/messages/common.html#PARAM_EXT_REQUEST_READ
https://mavlink.io/en/messages/common.html#PARAM_EXT_VALUE
https://mavlink.io/en/messages/common.html#PARAM_EXT_VALUE

Extended Parameter Protocol RAS-A IOP

Figure 21: Read Single Diagram

Write Parameters Parameters are written individually using PARAM_EXT_SET.
The recipient will respond with PARAM_EXT_ACK indicating success, failure, or that
the write is still in progress (PARAM_ACK_IN_PROGRESS). On receipt of PARAM_ACK_IN_
PROGRESS the component setting the parameter will extend its timeout (PARAM_
EXT_ACK will be re-sent when the write completes)
Parameters can be written individually by sending the parameter name and
value pair to the GCS, as shown:
For long-running write operations drone may initially respond with PARAM_ACK_
IN_PROGRESS:
The sequence of operations is:
1. GCS (client) sends PARAM_EXT_SET specifying the param name to update
and its new value (also target system/component and the param type).

2. GCS starts timeout waiting for acknowledgment (in the form of a PARAM_
EXT_ACK message).

3. Drone (starts to) write parameters and responds by broadcasting a PARAM_
EXT_ACK.

• If the write succeeded the PARAM_EXT_ACK will contain a result of PARAM_
ACK_ACCEPTED and the updated parameter value.

110

https://mavlink.io/en/messages/common.html#PARAM_EXT_SET
https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK
https://mavlink.io/en/messages/common.html#PARAM_EXT_SET
https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK
https://mavlink.io/en/services/parameter_ext.html#PARAM_EXT_ACK

Extended Parameter Protocol RAS-A IOP

Figure 22: Write Parameters Diagram

111

Extended Parameter Protocol RAS-A IOP

Figure 23: Long-Running Write Parameter Diagram

112

Command Protocol RAS-A IOP

• If the parameter was unknown or of an unsupported type PARAM_EXT_
ACKwill contain a result of PARAM_ACK_VALUE_UNSUPPORTED and the current
parameter value will be XXXXX.

• If the write failed for another reason then PARAM_EXT_ACK will contain a
result of PARAM_ACK_FAILED and the current parameter value.

• If the write operation is long-running the PARAM_EXT_ACK will contain a
result of PARAM_ACK_IN_PROGRESS and the XXXX parameter value. In this
case the recipient should increase their timeout and way for another
PARAM_EXT_ACK. PARAM_EXT_ACK should be present when the operation
completes.

4. GCS should update the parameter cache (if used) with the new value.
5. The GCS may restart the sequence if an expected PARAM_EXT_ACK is not
received within the timeout, or if the write operation fails.

Command Protocol
The MAVLink command protocol allows guaranteed delivery of MAVLink com-
mands.
Commands are values of MAV_CMD that define the values of up to 7 parameters.
These parameters and the command id are encoded in COMMAND_INT or COMMAND_
LONG for sending.
The protocol provides reliable delivery by expecting a matching acknowledge-
ment (COMMAND_ACK) from commands to indicate command arrival, and result. If
no acknowledgement is received the command must be automatically re-sent.
COMMAND_INT is generally recommended when sending positional information as
it allows greater precision, and is explicit about the coordinate frame. Com-
mands that require float-only properties in parameters 5, 6 must be sent in
COMMAND_LONG (e.g. commands where NaN has an explicit meaning).
Note: Under this IOP, support for both COMMAND_INT and COMMAND_LONG
generation and parsing are required for both vehicle and GCS imple-
menters.

Message/Enum Summary

113

https://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/messages/common.html#COMMAND_INT
https://mavlink.io/en/messages/common.html#COMMAND_LONG
https://mavlink.io/en/messages/common.html#COMMAND_LONG

Command Protocol RAS-A IOP

Table 59: Message

Message Description
COMMAND_INT Message for encoding a command (MAV_CMD). The

message encodes commands into up to 7
parameters: parameters 1-4, 7 are floats, and
parameters 5,6 are scaled integers. The scaled
integers are used for positional information (scaling
depends on the actual command value). The
coordinate frame of positional parameters is
explicitly specified in a frame field. Commands that
require float-only properties in parameters 5, 6
cannot be sent in this message (e.g. commands
where NaN has an explicit meaning).

COMMAND_LONG Message for encoding a command (MAV_CMD). The
message encodes commands into up to 7 float
parameters. The coordinate frame used for
positional coordinates is implementation dependent.
Any command may be packaged in this message,
but there may be some loss of precision for
positional coordinates (latitude, longitude).

COMMAND_ACK Command acknowledgement. Includes results
(success, failure, still in progress) and may include
progress information and additional detail about
failure reasons.

COMMAND_CANCEL Cancel a long running command.

Table 60: Enum

Enum Description
MAV_CMD Commands to be executed/sent in the command

messages.
MAV_FRAME Coordinate frame. Used in COMMAND_INT to specify

the coordinate frame of any positional parameters.
MAV_RESULT Result of command, included in COMMAND_ACK.result.

Sequences

If the command drops the sender should increase the confirmation field:

114

https://mavlink.io/en/messages/common.html#COMMAND_INT
https://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/messages/common.html#COMMAND_LONG
https://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/messages/common.html#COMMAND_ACK
https://mavlink.io/en/messages/common.html#COMMAND_CANCEL
https://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/services/mission.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#COMMAND_ACK

Command Protocol RAS-A IOP

Figure 24: Sequence Diagram

Long Running Commands

Some commands are long running, and cannot be completed immediately.
The drone reports its progress by sending COMMMAND_ACK messages with
COMMAND_ACK.result=MAV_RESULT_IN_PROGRESS and the progress as a percentage in
COMMMAND_ACK.progress ([0-100] percent complete, 255 if progress not supplied).
When the operation completes, the drone must terminate with a COMMMAND_ACK
containing the final result of the operation: MAV_RESULT_ACCEPTED, MAV_RESULT_
FAILED, MAV_RESULT_CANCELLED).
Long running operations may be cancelled by sending the COMMAND_CANCEL mes-
sage. The drone should cancel the operation and complete the sequence by
sending COMMAND_ACK with COMMAND_ACK.result=MAV_RESULT_CANCELLED.

• If cancellation is not supported the drone can just continue to send
progress updates until completion.

• If the sequence has already completed (or is idle) the cancel command
should be ignored.

If another command is received while handling a command (long running or
otherwise) the new command should be rejected with MAV_RESULT_TEMPORARILY_
REJECTED. What this means is that to restart an operation (i.e. with new param-
eters) it must first be cancelled.
The rate at which progress messages are emitted is system-dependent. Gen-

115

https://mavlink.io/en/messages/common.html#MAV_RESULT_IN_PROGRESS
https://mavlink.io/en/messages/common.html#COMMAND_CANCEL

Command Protocol RAS-A IOP

Figure 25: Sequence with Dropped Command Diagram

116

Command Protocol RAS-A IOP

Figure 26: Long Running Commands Diagram

117

Command Protocol RAS-A IOP

erally though, the GCS should have a much increased timeout after receiving
an ACK with MAV_RESULT_IN_PROGRESS.
If a timeout is triggered when waiting for a progress or completion update, the
GCS should terminate the sequence (return to the idle state) and notify the
user if appropriate.

Commands to support

Commands to be executed by the vehicle, either independently and when exe-
cuting a mission through the Mission Protocol. Note that similar to the parame-
ters, if the vehicle supports the functionality (like loiter, “follow-me” mode, or
others), then it should be capable of processing a command that interacts with
the respective function. Required commands are marked with the REQUIRED
tag, and are independent of the available capabilities in the vehicle. They can
be executed on user request, or as part of a mission script. If the action is used
in a mission, the parameter mapping to the waypoint/mission message is as
follows: Param 1, Param 2, Param 3, Param 4, X: Param 5, Y:Param 6, Z:Param
7. This command list is similar to what ARINC 424 is for commercial aircraft:
A data format how to interpret waypoint/mission data. NaN and INT32_MAX may
be used in float/integer params (respectively) to indicate optional/default val-
ues (e.g. to use the component’s current yaw or latitude rather than a specific
value). See MAV_CMD for information about the structure of the MAV_CMD entries.

MAV_CMD_NAV_WAYPOINT (16)

REQUIRED. Navigate to waypoints.

Table 61: Waypoint Navigation Configuration

Param Description Values Units
1: Hold Hold time. (ignored by fixed wing,

time to stay at waypoint for
rotary wing)

min:0 s

2: Accept
Radius

Acceptance radius (if the sphere
with this radius is hit, the
waypoint counts as reached)

min:0 m

3: Pass
Radius

0 to pass through the WP, if > 0
radius to pass by WP. Positive
value for clockwise orbit,
negative value for
counter-clockwise orbit. Allows
trajectory control.

m

118

http://mavlink.io/en/messages/common.html#mav_commands
https://mavlink.io/en/messages/common.html#mav_commands

Command Protocol RAS-A IOP

Param Description Values Units
4: Yaw Desired yaw angle at waypoint

(rotary wing). NaN to use the
current system yaw heading
mode (e.g. yaw towards next
waypoint, yaw to home, etc.).

deg

5: Latitude Latitude
6: Longitude Longitude
7: Altitude Altitude m

MAV_CMD_NAV_LOITER_UNLIM (17)

Loiter around this waypoint an unlimited amount of time

Table 62: Around Waypoint Navigation Configu-
ration

Param Description Values Units
1 Empty
2 Empty
3: Radius Loiter radius around waypoints

for forward-only moving vehicles
(not multicopters). If positive
loiter clockwise, else
counter-clockwise

m

4: Yaw Desired yaw angle. NaN to use
the current system yaw heading
mode (e.g. yaw towards next
waypoint, yaw to home, etc.).

deg

5: Latitude Latitude
6: Longitude Longitude
7: Altitude Altitude m

MAV_CMD_NAV_LOITER_TURNS (18)

Loiter around this waypoint for X turns.

119

Command Protocol RAS-A IOP

Table 63: Specific Around Waypoint Navigation
Configuration

Param Description Values Units
1: Turns Number of turns. min:0
2: Heading
Required

Leave loiter circle only once
heading towards the next
waypoint (0 = False)

min:0,
max:1 in-
crement:1

3: Radius Loiter radius around waypoints for
forward-only moving vehicles (not
multicopters). If positive loiter
clockwise, else counter-clockwise

m

4: Xtrack
Location

Loiter circle exit location and/or
path to next waypoint (”xtrack”)
for forward-only moving vehicles
(not multicopters). 0 for the
vehicle to converge towards the
center xtrack when it leaves the
loiter (the line between the
centers of the current and next
waypoint), 1 to converge to the
direct line between the location
that the vehicle exits the loiter
radius and the next waypoint.
Otherwise the angle (in degrees)
between the tangent of the loiter
circle and the center xtrack at
which the vehicle must leave the
loiter (and converge to the center
xtrack). NaN to use the current
system default xtrack behavior.

5: Latitude Latitude
6: Longitude Longitude
7: Altitude Altitude m

MAV_CMD_NAV_LOITER_TIME (19) Loiter at the specified latitude, longi-
tude and altitude for a certain amount of time. Multicopter vehicles stop at
the point (within a vehicle-specific acceptance radius). Forward-only moving
vehicles (e.g. fixed-wing) circle the point with the specified radius/direction. If
the Heading Required parameter (2) is non-zero, forward moving aircraft will
only leave the loiter circle once heading towards the next waypoint.

120

Command Protocol RAS-A IOP

Table 64: Latitude Loiter Navigation Configura-
tion

Param Description Values Units
1: Time Loiter time (only starts once Lat,

Lon and Alt is reached).
min:0 s

2: Heading
Required
Leave loiter
circle only
once heading
towards the
next waypoint
(0 = False)

min:0 max:1 increment:1

3: Radius Loiter radius around waypoints for
forward-only moving vehicles (not
multicopters). If positive loiter
clockwise, else counter-clockwise.

m

4: Xtrack
Location

Loiter circle exit location and/or
path to next waypoint (”xtrack”)
for forward-only moving vehicles
(not multicopters). 0 for the
vehicle to converge towards the
center xtrack when it leaves the
loiter (the line between the
centers of the current and next
waypoint), 1 to converge to the
direct line between the location
that the vehicle exits the loiter
radius and the next waypoint.
Otherwise the angle (in degrees)
between the tangent of the loiter
circle and the center xtrack at
which the vehicle must leave the
loiter (and converge to the center
xtrack). NaN to use the current
system default xtrack behavior.

5: Latitude Latitude
6: Longitude Longitude
7: Altitude Altitude m

MAV_CMD_NAV_RETURN_TO_LAUNCH (20)

121

Command Protocol RAS-A IOP

REQUIRED. Return to launch location.
Note: this command should change the the vehicle to AUTO:RTLmode.

Table 65: Return to Launch Navigation Configu-
ration

Param Description
1 Reserved for future use
2 Reserved for future use
3 Reserved for future use
4 Reserved for future use
5 Reserved for future use
6 Reserved for future use
7 Reserved for future use

MAV_CMD_NAV_LAND (21)

REQUIRED. Land at location.
Note: this command should change the the vehicle to AUTO:LAND
mode.

Table 66: Land at Location Navigation Configura-
tion

Param Description Values Units
1: Abort Alt Minimum target altitude if landing

is aborted (0 = undefined/use
system default).

m

2: Land Mode Precision land mode. PRECISION_
LAND_MODE

3: Empty.
4: Yaw Angle Desired yaw angle. NaN to use

the current system yaw heading
mode (e.g. yaw towards next
waypoint, yaw to home, etc.).

deg

5: Latitude Latitude.
6: Longitude Longitude.
7: Altitude Landing altitude (ground level in

current frame).
m

122

Command Protocol RAS-A IOP

MAV_CMD_NAV_TAKEOFF (22) REQUIRED. Takeoff from ground / hand. Ve-
hicles that support multiple takeoff modes (e.g. VTOL quadplane) should take
off using the currently configured mode.
Note: this command should change the the vehicle to AUTO:TAKEOFF
mode.

Table 67: Take off Navigation Configuration

Param Description Units
1: Pitch Minimum pitch (if airspeed sensor

present), desired pitch without sensor
deg

2: Empty
3: Empty
4: Yaw Yaw angle (if magnetometer present),

ignored without magnetometer. NaN to
use the current system yaw heading
mode (e.g. yaw towards next waypoint,
yaw to home, etc.).

deg

5: Latitude Latitude
6: Longitude Longitude
7: Altitude Altitude m

MAV_CMD_DO_ORBIT (34)

Start orbiting on the circumference of a circle defined by the parameters. Set-
ting values to NaN/INT32_MAX (as appropriate) results in using defaults.

Table 68: Orbit Navigation Configuration

Param Description Values Units
1: Radius Radius of the circle. Positive:

orbit clockwise. Negative: orbit
counter-clockwise. NaN: Use
vehicle default radius, or current
radius if already orbiting.

m

2: Velocity Tangential Velocity. NaN: Use
vehicle default velocity, or current
velocity if already orbiting.

m/s

3: Yaw
Behavior

Yaw behavior of the vehicle. ORBIT_YAW_
BEHAVIOUR

123

Command Protocol RAS-A IOP

Param Description Values Units
4: Orbits Orbit around the centre point for

this many radians (i.e. for a
three-quarter orbit set
270*Pi/180). 0: Orbit forever.
NaN: Use vehicle default, or
current value if already orbiting.

min:0 rad

5: Latitude/X Center point latitude (if no MAV_
FRAME specified) / X coordinate
according to MAV_FRAME. INT32_MAX
(or NaN if sent in COMMAND_LONG):
Use current vehicle position, or
current center if already orbiting.

6: Longitude/Y Center point longitude (if no MAV_
FRAME specified) / Y coordinate
according to MAV_FRAME. INT32_MAX
(or NaN if sent in COMMAND_LONG):
Use current vehicle position, or
current center if already orbiting.

7: Altitude/Z Center point altitude (MSL) (if no
MAV_FRAME specified) / Z coordinate
according to MAV_FRAME. NaN: Use
current vehicle altitude.

MAV_CMD_DO_SET_MODE (176)

REQUIRED. Set system mode.
Note: This command changes the vehicle to any of the supported
modes defined in this IOP.

Table 69: Set Mode Configuration

Param Description Values Units
1: Mode Mode MAV_MODE
2: Custom
Mode

Custom mode - this is system
specific, please refer to the
individual autopilot specifications
for details.

3: Custom
Submode

Custom sub mode - this is system
specific, please refer to the
individual autopilot specifications
for details.

124

Command Protocol RAS-A IOP

Param Description Values Units
4:
5:
6:
7:

MAV_CMD_DO_CHANGE_SPEED (178)

REQUIRED. Change speed and/or throttle set points.

Table 70: Change Speed Configuration

Param Description Values Units
1: Speed Type Speed type (0=Airspeed,

1=Ground Speed, 2=Climb Speed,
3=Descent Speed)

min:0
max:3 in-
crement:1

2: Speed Speed (-1 indicates no change). min: -1 m/s
3: Throttle Throttle (-1 indicates no change). min: -1 %
4:
5:
6:
7:

MAV_CMD_DO_SET_HOME (179)

REQUIRED. Sets the home position to either to the current position or a spec-
ified position. The home position is the default position that the system will
return to and land on. The position is set automatically by the system during
the takeoff (and may also be set using this command). Note: the current home
position may be emitted in a HOME_POSITIONmessage on request (using MAV_CMD_
REQUEST_MESSAGE with param1=242).

Table 71: Set Home Position Configuration

Param Description Values Units
1: Use Current Use current (1=use current

location, 0=use specified
location)

min:0
max:1 in-
crement:1

2:
3:

125

Command Protocol RAS-A IOP

Param Description Values Units
4: Yaw Yaw angle. NaN to use default

heading
deg

5: Latitude Latitude
6: Longitude Longitude
7: Altitude Altitude m

MAV_CMD_DO_FLIGHTTERMINATION (185)

REQUIRED. Terminate flight immediately. Flight termination immediately and
irreversibly terminates the current flight, returning the vehicle to ground. The
vehicle will ignore RC or other input until it has been power-cycled. Termination
may trigger safety measures, including: disabling motors and deployment of
parachute on multicopters, and setting flight surfaces to initiate a landing pat-
tern on fixed-wing). On multicopters without a parachute it may trigger a crash
landing. Support for this command can be tested using the protocol bit: MAV_
PROTOCOL_CAPABILITY_FLIGHT_TERMINATION. Support for this command can also be
tested by sending the command with param1=0 (< 0.5); the ACK should be
either MAV_RESULT_FAILED or MAV_RESULT_UNSUPPORTED.

Table 72: Flight Termination Configuration

Param Description Values Units
1: Terminate Flight termination activated if >

0.5. Otherwise not activated and
ACK with MAV_RESULT_FAILED.

min:0
max:1 in-
crement:1

2:
3:
4:
5:
6:
7:

MAV_CMD_DO_CHANGE_ALTITUDE (186) REQUIRED. Change altitude set
point.

126

Command Protocol RAS-A IOP

Table 73: Change Altitude Navigation Configura-
tion

Param Description Values Units
1: Altitude Altitude. m
2: Frame Frame of new altitude. MAV_FRAME
3:
4:
5:
6:
7:

MAV_CMD_DO_REPOSITION (192)

REQUIRED. Reposition the vehicle to a specific WGS84 global position.

Table 74: Reposition Navigation Configuration

Param Description Values Units
1: Speed Ground speed, less than 0 (-1) for

default
min: -1 m/s

2: Bitmask Bitmask of option flags. MAV_DO_
REPOSI-
TION_
FLAGS

3: Reserved
4: Yaw Yaw heading. NaN to use the current

system yaw heading mode (e.g. yaw
towards next waypoint, yaw to home,
etc.). For planes indicates loiter
direction (0: clockwise, 1: counter
clockwise)

deg

5: Latitude Latitude
6: Longitude Longitude
7: Altitude Altitude m

MAV_CMD_DO_PAUSE_CONTINUE (193)

REQUIRED. If in a GPS controlled position mode, hold the current position or
continue.

127

Command Protocol RAS-A IOP

Note: If the vehicle is in AUTO:MISSION mode, when processing this
command, the vehicle should change to AUTO:LOITER mode. If in
AUTO:LOITER mode, then when processing the command, the vehicle
should change to AUTO:MISSION mode.

Table 75: Pause and Continue Navigation Config-
uration

Param Description Values
1: Continue 0: Pause current mission or reposition

command, hold current position. 1:
Continue the mission. A VTOL capable
vehicle should enter hover mode
(multicopter and VTOL planes). A
plane should loiter with the default
loiter radius.

min:0 max:1
increment:1

2: Reserved
3: Reserved
4: Reserved
5: Reserved
6: Reserved
7: Reserved

MAV_CMD_DO_SET_ROI_LOCATION (195)

Sets the region of interest (ROI) to a location. This can then be used by the ve-
hicle’s control system to control the vehicle attitude and the attitude of various
sensors such as cameras. This command can be sent to a gimbal manager but
not to a gimbal device. A gimbal is not to react to this message.

Table 76: ROI Location Configuration

Param Description Values Units
1: Gimbal
device ID

Component ID of gimbal device to
address (or 1-6 for non-MAVLink
gimbal), 0 for all gimbal device
components. Send command
multiple times for more than one
gimbal (but not all gimbals).

2:
3:
4:

128

Command Protocol RAS-A IOP

Param Description Values Units
5: Latitude Latitude of ROI location degE7
6: Longitude Longitude of ROI location degE7
7: Altitude Altitude of ROI location m

MAV_CMD_DO_SET_ROI_WPNEXT_OFFSET (196)

Sets the region of interest (ROI) to be toward next waypoint, with optional
pitch/roll/yaw offset. This can then be used by the vehicle’s control system
to control the vehicle attitude and the attitude of various sensors such as cam-
eras. This command can be sent to a gimbal manager but not to a gimbal
device. A gimbal device is not to react to this message.

Table 77: ROI Next Waypoint Offset Configura-
tion

Param Description Values Units
1: Gimbal
device ID

Component ID of gimbal device to
address (or 1-6 for non-MAVLink
gimbal), 0 for all gimbal device
components. Send command
multiple times for more than one
gimbal (but not all gimbals).

2:
3:
4:
5: Pitch
Offset

Pitch offset from next waypoint,
positive pitching up

rad

6: Roll Offset Roll offset from next waypoint,
positive rolling to the right

rad

7: Yaw Offset Yaw offset from next waypoint,
positive yawing to the right

rad

MAV_CMD_DO_SET_ROI_NONE (197)

Cancels any previous ROI command returning the vehicle/sensors to default
flight characteristics. This can then be used by the vehicle’s control system to
control the vehicle attitude and the attitude of various sensors such as cameras.
This command can be sent to a gimbal manager but not to a gimbal device. A
gimbal device is not to react to this message. After this command the gimbal

129

Command Protocol RAS-A IOP

manager should go back to manual input if available, and otherwise assume a
neutral position.

Table 78: Cancel ROI Configuration

Param Description Values Units
1: Gimbal
device ID

Component ID of gimbal device to
address (or 1-6 for non-MAVLink
gimbal), 0 for all gimbal device
components. Send command
multiple times for more than one
gimbal (but not all gimbals).

2:
3:
4:
5:
6:
7:

MAV_CMD_DO_MOUNT_CONTROL (205)

This command is deprecated, but still considered under this IOP while
Gimbal Protocol v1 is marked as supported. To be removed on a next
IOP release.
Mission command to control a camera or antenna mount. The message can
still be used to communicate with legacy gimbals implementing it.

Table 79: Mount Control Configuration

Param Description Values Units
1: Pitch Pitch depending on mount mode

(degrees or degrees/second
depending on pitch input).

2: Roll Roll depending on mount mode
(degrees or degrees/second
depending on roll input).

3: Yaw Yaw depending on mount mode
(degrees or degrees/second
depending on yaw input).

4: Altitude Altitude depending on mount mode. m
5: Latitude Latitude, set if appropriate mount

mode.
degE7

130

Command Protocol RAS-A IOP

Param Description Values Units
6: Longitude Longitude, set if appropriate mount

mode.
degE7

7: Mode Mount mode. MAV_MOUNT_
MODE

MAV_CMD_DO_SET_CAM_TRIGG_DIST (206)

Mission command to set camera trigger distance for this flight. The camera is
triggered each time this distance is exceeded. This command can also be used
to set the shutter integration time for the camera.

Table 80: Camera Trigger Distance Configuration

Param Description Values Units
1: Distance Camera trigger distance. 0 to stop

triggering.
min:0 m

2: Shutter Camera shutter integration time. -1
or 0 to ignore

min: -1 in-
crement:1

ms

3: Trigger Trigger camera once immediately. (0
= no trigger, 1 = trigger)

min:0
max:1 in-
crement:1

4:
5:
6:
7:

MAV_CMD_DO_SET_CAM_TRIGG_INTERVAL (214)

Mission command to set camera trigger interval for this flight. If triggering is
enabled, the camera is triggered each time this interval expires. This command
can also be used to set the shutter integration time for the camera.

Table 81: Camera Trigger Interval Configuration

Param Description Values Units
1: Trigger
Cycle

Camera trigger cycle time. -1 or 0 to
ignore.

min: -1 in-
crement:1

ms

131

Command Protocol RAS-A IOP

Param Description Values Units
2: Shutter
Integration

Camera shutter integration time.
Should be less than trigger cycle
time. -1 or 0 to ignore.

min: -1 in-
crement:1

ms

3:
4:
5:
6:
7:

MAV_CMD_PREFLIGHT_CALIBRATION (241)

Trigger calibration. This command will be only accepted if in pre-flight mode.
Except for Temperature Calibration, only one sensor should be set in a single
message and all others should be zero.
Note: This command is sent by QGC-Gov when executing a sensor
calibration procedure.

Table 82: Pre Flight Calibration

Param Description Values
1: Gyro
Temperature

1: gyro calibration, 3: gyro
temperature calibration

min:0 max:3
increment:1

2:
Magnetometer

1: magnetometer calibration min:0 max:1
increment:1

3: Ground
Pressure

1: ground pressure calibration min:0 max:1
increment:1

4: Remote
Control

1: radio RC calibration, 2: RC trim
calibration

min:0 max:1
increment:1

5:
Accelerometer

1: accelerometer calibration, 2: board
level calibration, 3: accelerometer
temperature calibration, 4: simple
accelerometer calibration

min:0 max:4
increment:1

6: Compass or
Airspeed

1: Compass/motor interference
calibration, 2: airspeed calibration

min:0 max:2
increment:1

7: ESC or Baro 1: ESC calibration, 3: barometer
temperature calibration

min:0 max:3
increment:1

MAV_CMD_MISSION_START (300)

132

Command Protocol RAS-A IOP

REQUIRED. Start running a mission.
Note: this command should change the the vehicle to AUTO:MISSION
mode.

Table 83: Mission Start Configuration

Param Description Values Units
1: First Item first_item: the first mission item to

run.
min:0 in-
crement:1

2: Last Item last_item: the last mission item to
run (after this item is run, the mission
ends)

min: 0 in-
crement:1

3:
4:
5:
6:
7:

MAV_CMD_COMPONENT_ARM_DISARM (400)

REQUIRED. Arms / Disarms a component. Used to arm / disarm a vehicle.
While in air, this command should only execute if param2=21196.
This command can be process as a long running command.

Table 84: Arm and Disarm

Param Description Values Units
1: Arm 0: Disarm, 1: Arm min:0

max:1 in-
crement:1

2: Force 0: Arm-disarm unless prevented by
safety checks (i.e. when landed),
21196: force arming/disarming
(e.g. allow arming to override
preflight checks and disarming in
flight)

min:0
max:21196
incre-
ment:21196

3:
4:
5:
6:
7:

133

Command Protocol RAS-A IOP

MAV_CMD_START_RX_PAIR (500)

Starts receiver pairing.
Note: This command is required when the vehicle supports datalink
radio pairing and there is no direct connection between pairing trigger
(for example, a pairing or safety button press), and the service run-
ning the Pairing Slave. An example of this scenario is when the pairing
button is connected to an embedded autopilot flight controller board,
and the Pairing Slave is running on a connected companion onboard
computer.

Table 85: Pairing Start Configuration

Param Description Values Units
1: Spektrum 0: Spektrum.
2: RC Type RC type. RC_TYPE
3:
4:
5:
6:
7:

MAV_CMD_SET_MESSAGE_INTERVAL (511)

REQUIRED. Set the interval between messages for a particular MAVLink mes-
sage ID. This interface replaces REQUEST_DATA_STREAM.
Note: Under this IOP, any required and (supported) optional mes-
sage stream should be have its interval configurable through this com-
mand.

Table 86: Message Interval Configuration

Param Description Values Units
1: Message
ID

The MAVLink message ID min:0
max:16777215
incre-
ment:1

2: Interval The interval between two messages.
Set to -1 to disable and 0 to request
default rate.

min: -1 in-
crement:1

us

3:

134

Command Protocol RAS-A IOP

Param Description Values Units
4:
5:
6:
7: Response
Target

Target address of message stream (if
message has target address fields).
0: Flight-stack default
(recommended), 1: address of
requestor, 2: broadcast.

min:0
max:2 in-
crement:1

MAV_CMD_REQUEST_MESSAGE (512)

REQUIRED. Request the target system(s) emit a single instance of a specified
message (i.e. a “one-shot” version of MAV_CMD_SET_MESSAGE_INTERVAL). The list
of the required messages, that should be sent when requested through this
command, can be found below:

• HOME_POSITION
• FLIGHT_INFORMATION
• MESSAGE_INTERVAL
• PROTOCOL_VERSION (Handshake)
• AUTOPILOT_VERSION (Handshake)
• CAMERA_INFORMATION (Camera Protocol, when supported)
• CAMERA_SETTINGS (Camera Protocol, when supported)
• CAMERA_CAPTURE_STATUS (Camera Protocol, when supported)
• CAMERA_IMAGE_CAPTURED (Camera Protocol, when supported)
• STORAGE_INFORMATION (Camera Protocol, when supported)
• VIDEO_STREAM_STATUS (Camera Protocol, when supported)
• VIDEO_STREAM_INFORMATION (Camera Protocol, when supported)
• GIMBAL_MANAGER_INFORMATION (Gimbal Protocol v2, when supported)
• GIMBAL_DEVICE_INFORMATION (Gimbal Protocol v2, when supported)

Table 87: Request Message Configuration

Param Description Values
1: Message ID The MAVLink message ID of the

requested message.
min:0
max:16777215
increment:1

2: Req Param 1 Use for index ID, if required. Otherwise,
the use of this parameter (if any) must
be defined in the requested message.
By default assumed not used (0).

135

Command Protocol RAS-A IOP

Param Description Values
3: Req Param 2 The use of this parameter (if any),

must be defined in the requested
message. By default assumed not
used (0).

4: Req Param 3 The use of this parameter (if any),
must be defined in the requested
message. By default assumed not
used (0).

5: Req Param 4 The use of this parameter (if any),
must be defined in the requested
message. By default assumed not
used (0).

6: Req Param 5 The use of this parameter (if any),
must be defined in the requested
message. By default assumed not
used (0).

7: Response
Target

Target address for requested message
(if message has target address fields).
0: Flight-stack default, 1: address of
requester, 2: broadcast.

min:0 max:2
increment:1

MAV_CMD_SET_CAMERA_MODE (530)

Set camera running mode. Use NaN for reserved values. GCS will send a MAV_
CMD_REQUEST_VIDEO_STREAM_STATUS command after a mode change if the camera
supports video streaming.

Table 88: Camera Mode Configuration

Param Description Values Units
1:
2: Camera Mode Camera mode CAMERA_MODE
3:
4:
5:
6:
7:

MAV_CMD_SET_CAMERA_ZOOM (531)

136

Command Protocol RAS-A IOP

Set camera zoom. Camera must respond with a CAMERA_SETTINGS message (on
success).

Table 89: Camera Zoom Configuration

Param Description Values Units
1: Zoom Type Zoom type CAMERA_

ZOOM_TYPE
2: Zoom
Value

Zoom value. The range of valid
values depend on the zoom type.

3:
4:
5:
6:
7:

MAV_CMD_SET_CAMERA_FOCUS (532)

Set camera focus. Camera must respond with a CAMERA_SETTINGS message (on
success).

Table 90: Camera Focus Configuration

Param Description Values Units
1: Focus Type Focus type SET_FOCUS_TYPE
2: Focus Value Focus value.
3:
4:
5:
6:
7:

MAV_CMD_SET_STORAGE_USAGE (533)

Set that a particular storage is the preferred location for saving photos, videos,
and/or other media (e.g. to set that an SD card is used for storing videos).
There can only be one preferred save location for each particular media type:
setting a media usage flag will clear/reset that same flag if set on any other
storage. If no flag is set the system should use its default storage. A target
system can choose to always use default storage, in which case it should ACK
the command with MAV_RESULT_UNSUPPORTED. A target system can choose to not

137

Command Protocol RAS-A IOP

allow a particular storage to be set as preferred storage, in which case it should
ACK the command with MAV_RESULT_DENIED.

Table 91: Storage Usage Configuration

Param Description Values Units
1: Storage ID Storage ID (1 for first, 2 for second,

etc.)
min:0 in-
crement:1

2: Usage Usage flags. STORAGE_
USAGE_FLAG

3:
4:
5:
6:
7:

MAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW (1000) REQUIRED when
using Gimbal Protocol V2. High level setpoint to be sent to a gimbal man-
ager to set a gimbal attitude. It is possible to set combinations of the values
below. E.g. an angle as well as a desired angular rate can be used to get to this
angle at a certain angular rate, or an angular rate only will result in continuous
turning. NaN is to be used to signal unset.
Note: a gimbal is never to react to this command but only the gimbal manager.

Table 92: Gimbal Manager Configuration I

Param Description Values Units
1: Pitch angle Pitch angle (positive to pitch up,

relative to vehicle for FOLLOW mode,
relative to world horizon for LOCK
mode).

min: -180
max:180

deg

2: Yaw angle Yaw angle (positive to yaw to the
right, relative to vehicle for FOLLOW
mode, absolute to North for LOCK
mode).

min: -180
max:180

deg

3: Pitch rate Pitch rate (positive to pitch up). deg/s
4: Yaw rate Yaw rate (positive to yaw to the

right).
deg/s

5: Gimbal
manager
flags

Gimbal manager flags to use. GIMBAL_
MAN-
AGER_
FLAGS

138

Command Protocol RAS-A IOP

Param Description Values Units
7: Gimbal
device ID

Component ID of gimbal device to
address (or 1-6 for non-MAVLink
gimbal), 0 for all gimbal device
components. Send command
multiple times for more than one
gimbal (but not all gimbals).

MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE (1001) REQUIRED
when using Gimbal Protocol V2. Gimbal configuration to set which
sysid/compid is in primary and secondary control.

Table 93: Gimbal Manager Configuration II

Param Description
1: sysid primary
control

Sysid for primary control (0: no one in control, -1:
leave unchanged, -2: set itself in control (for
missions where the own sysid is still unknown), -3:
remove control if currently in control).

2: compid primary
control

Compid for primary control (0: no one in control, -1:
leave unchanged, -2: set itself in control (for
missions where the own sysid is still unknown), -3:
remove control if currently in control).

3: sysid secondary
control

Sysid for secondary control (0: no one in control, -1:
leave unchanged, -2: set itself in control (for
missions where the own sysid is still unknown), -3:
remove control if currently in control).

4: compid secondary
control

Compid for secondary control (0: no one in control,
-1: leave unchanged, -2: set itself in control (for
missions where the own sysid is still unknown), -3:
remove control if currently in control).

7: Gimbal device ID Component ID of gimbal device to address (or 1-6 for
non-MAVLink gimbal), 0 for all gimbal device
components. Send command multiple times for
more than one gimbal (but not all gimbals).

MAV_CMD_IMAGE_START_CAPTURE (2000)

Start image capture sequence. Sends CAMERA_IMAGE_CAPTURED after each capture.
Use NaN for reserved values.

139

Command Protocol RAS-A IOP

Table 94: Start Capture Configuration

Param Description Values Units
1: Reserved (Set to 0)
2: Interval Desired elapsed time between two

consecutive pictures (in seconds).
Minimum values depend on hardware
(typically greater than 2 seconds).

min:0 s

3: Total
Images

Total number of images to capture. 0
to capture forever/until MAV_CMD_
IMAGE_STOP_CAPTURE.

min:0 in-
crement:1

4: Sequence
Number

Capture sequence number starting
from 1. This is only valid for
single-capture (param3 == 1),
otherwise set to 0. Increment the
capture ID for each capture
command to prevent double captures
when a command is re-transmitted.

min:1 in-
crement:1

5:
6:
7:

MAV_CMD_IMAGE_STOP_CAPTURE (2001)
Stop image capture sequence Use NaN for reserved values.

Table 95: Stop Capture Configuration

Param Description Values Units
1:
2:
3:
4:
5:
6:
7:

MAV_CMD_DO_TRIGGER_CONTROL (2003)

Enable or disable on-board camera triggering system.

140

Command Protocol RAS-A IOP

Table 96: Trigger Control Configuration

Param Description Values Units
1: Enable Trigger enable/disable (0 for disable,

1 for start), -1 to ignore
min: -1
max:1 in-
crement:1

2: Reset 1 to reset the trigger sequence, -1 or
0 to ignore

min: -1
max:1 in-
crement:1

3: Pause 1 to pause triggering, but without
switching the camera off or retracting
it. -1 to ignore

min: -1
max:1 in-
crement:2

4:
5:
6:
7:

MAV_CMD_CAMERA_TRACK_POINT (2004)
If the camera supports point visual tracking (CAMERA_CAP_FLAGS_HAS_TRACKING_
POINT is set), this command allows to initiate the tracking.

Table 97: Track Point Configuration

Param Description Values
1: Point x Point to track x value (normalized 0..1,

0 is left, 1 is right).
min:0 max:1

2: Point y Point to track y value (normalized 0..1,
0 is top, 1 is bottom).

min:0 max:1

3: Radius Point radius (normalized 0..1, 0 is
image left, 1 is image right).

min:0 max:1

MAV_CMD_CAMERA_TRACK_RECTANGLE (2005)
If the camera supports rectangle visual tracking (CAMERA_CAP_FLAGS_HAS_
TRACKING_RECTANGLE is set), this command allows to initiate the tracking.

Table 98: Track Rectangle Configuration

Param Description Values
1: Top left
corner x

Top left corner of rectangle x value
(normalized 0..1, 0 is left, 1 is right).

min:0 max:1

141

Command Protocol RAS-A IOP

Param Description Values
2: Top left
corner y

Top left corner of rectangle y value
(normalized 0..1, 0 is top, 1 is bottom).

min:0 max:1

3: Bottom right
corner x

Bottom right corner of rectangle x
value (normalized 0..1, 0 is left, 1 is
right).

min:0 max:1

4: Bottom right
corner y

Bottom right corner of rectangle y
value (normalized 0..1, 0 is top, 1 is
bottom).

min:0 max:1

MAV_CMD_CAMERA_STOP_TRACKING (2010)

Stops ongoing tracking.
Table 99: Stop Tracking Configuration

Param Description

MAV_CMD_VIDEO_START_CAPTURE (2500)

Starts video capture (recording).
Table 100: Video Start Capture Configuration

Param Description Values Units
1: Stream ID Video Stream ID (0 for all streams) min:0 in-

crement:1
2: Status
Frequency

Frequency CAMERA_CAPTURE_
STATUS messages should be sent
while recording (0 for no messages,
otherwise frequency)

min:0 Hz

3:
4:
5:
6:
7:

MAV_CMD_VIDEO_STOP_CAPTURE (2501) Stop the current video capture
(recording).

142

Command Protocol RAS-A IOP

Table 101: Video Stop Capture Configuration

Param Description Values
1: Stream ID Video Stream ID (0 for all streams) min:0 increment:1
2:
3:
4:
5:
6:
7:

MAV_CMD_DO_VTOL_TRANSITION (3000) REQUIRED for VTOL aircraft.
Request VTOL transition.

Table 102: VTOL Transition Configuration

Param Description Values
1: State The target VTOL state. For normal

transitions, only MAV_VTOL_STATE_MC and
MAV_VTOL_STATE_FW can be used.

MAV_VTOL_STATE

2: Immediate Force immediate transition to the
specified MAV_VTOL_STATE. 1: Force
immediate, 0: normal transition. Can
be used, for example, to trigger an
emergency “Quadchute”. Caution:
Can be a dangerous/damaged vehicle,
depending on autopilot
implementation of this command.

MAV_CMD_NAV_FENCE_POLYGON_VERTEX_INCLUSION (5001)

Fence vertex for an inclusion polygon (the polygon must not be self-
intersecting). The vehicle must stay within this area. Minimum of 3 vertices
required.

143

Command Protocol RAS-A IOP

Table 103: Geofence Polygon Vertex Inclusion
Configuration

Param Description Values Units
1: Vertex
Count

Polygon vertex count min:3 in-
crement:1

2: Inclusion
Group

Vehicle must be inside ALL inclusion
zones in a single group, vehicle must
be inside at least one group, must be
the same for all points in each
polygon

min:0 in-
crement:1

3:
4:
5: Latitude Latitude
6: Longitude Longitude
7:

MAV_CMD_NAV_FENCE_POLYGON_VERTEX_EXCLUSION (5002)

Fence vertex for an exclusion polygon (the polygon must not be self-
intersecting). The vehicle must stay outside this area. Minimum of 3
vertices required.

Table 104: Geofence Polygon Vertex Inclusion
Configuration

Param Description Values Units
1: Vertex Count Polygon vertex count min:3 increment:1
2:
3:
4:
5: Latitude Latitude
6: Longitude Longitude
7:

MAV_CMD_NAV_FENCE_CIRCLE_INCLUSION (5003)

Circular fence area. The vehicle must stay inside this area.

144

Command Protocol RAS-A IOP

Table 105: Geofence Circle Inclusion Configura-
tion

Param Description Values Units
1: Radius Polygon vertex count m
2: Inclusion
Group

Vehicle must be inside ALL inclusion
zones in a single group, vehicle must
be inside at least one group.

min:0 in-
crement:1

3:
4:
5: Latitude Latitude
6: Longitude Longitude
7:

MAV_CMD_NAV_FENCE_CIRCLE_EXCLUSION (5004)

Circular fence area. The vehicle must stay outside this area.

Table 106: Geofence Circle Exclusion Configura-
tion

Param Description Values Units
1: Radius Polygon vertex count m
2:
3:
4:
5: Latitude Latitude
6: Longitude Longitude
7:

MAV_CMD_NAV_RALLY_POINT (5100)

Rally point. You can have multiple rally points defined.

Table 107: Rally Point Configuration

Param Description Values Units
1:
2:
3:

145

Command Protocol RAS-A IOP

Param Description Values Units
4:
5: Latitude Latitude
6: Longitude Longitude
7: Altitude m

MAV_RESULT

[Enum] Result from a MAVLink command (MAV_CMD)

Table 108: MAVResult Enum

Value Field Name Description
0 MAV_RESULT_ACCEPTED Command is valid (is supported and has

valid parameters), and was executed.
1 MAV_RESULT_

TEMPORARILY_REJECTED
Command is valid, but cannot be
executed at this time. This is used to
indicate a problem that should be fixed
just by waiting (e.g. a state machine is
busy, can’t arm because it does not
have a GPS lock, etc.). Retrying later
should work.

2 MAV_RESULT_DENIED Command is invalid (is supported but
has invalid parameters). Retrying the
same command and parameters will not
work.

3 MAV_RESULT_
UNSUPPORTED

Command is not supported (unknown).

4 MAV_RESULT_FAILED Command is valid, but execution has
failed. This is used to indicate any
non-temporary or unexpected problem,
i.e. any problem that must be fixed
before the command can succeed/be
retried. For example, attempting to
write a file when out of memory,
attempting to arm when sensors are not
calibrated, etc.

146

http://mavlink.io/en/messages/common.html#enums
https://mavlink.io/en/messages/common.html#MAV_RESULT_ACCEPTED
https://mavlink.io/en/messages/common.html#MAV_RESULT_TEMPORARILY_REJECTED
https://mavlink.io/en/messages/common.html#MAV_RESULT_TEMPORARILY_REJECTED
https://mavlink.io/en/messages/common.html#MAV_RESULT_DENIED
https://mavlink.io/en/messages/common.html#MAV_RESULT_UNSUPPORTED
https://mavlink.io/en/messages/common.html#MAV_RESULT_UNSUPPORTED
https://mavlink.io/en/messages/common.html#MAV_RESULT_FAILED

Camera Protocol RAS-A IOP

Value Field Name Description
5 MAV_RESULT_IN_

PROGRESS
Command is valid and is being executed.
This will be followed by further progress
updates, i.e. the component may send
further COMMAND_ACK messages with result
MAV_RESULT_IN_PROGRESS (at a rate
decided by the implementation), and
must terminate by sending a
COMMAND_ACK message with final
result of the operation. The COMMAND_
ACK.progress field can be used to
indicate the progress of the operation.

6 MAV_RESULT_CANCELLED Command has been cancelled (as a
result of receiving a COMMAND_CANCEL
message).

Camera Protocol
The camera protocol is used to configure camera payloads and request their
status. It supports photo capture, video capture, and streaming. It also in-
cludes messages to query and configure the onboard camera storage.
The Dronecode Camera Manager provides an example implementation of this
protocol.
We are transitioning from specific request commands to a single generic re-
questor. GCS and MAVLink SDKs/apps should support both approaches as we
migrate to exclusive use of the new method (documented here). For more
information see Migration Notes for GCS & Camera Servers.

Camera Connection

Camera components are expected to follow the Heartbeat/Connection Protocol
and send a constant flow of heartbeats (nominally at 1Hz). Each camera must
use a different predefined camera component ID: MAV_COMP_ID_CAMERA to MAV_
COMP_ID_CAMERA6.
The first time a heartbeat is detected from a new camera, a GCS (or other
receiving system) should start the Camera Identification process.
If a receiving system stops receiving heartbeats from the camera it is assumed
to be disconnected, and should be removed from the list of available cameras.
If heartbeats are again detected, the camera identification process below must
be restarted from the beginning.

147

https://mavlink.io/en/messages/common.html#MAV_RESULT_IN_PROGRESS
https://mavlink.io/en/messages/common.html#MAV_RESULT_IN_PROGRESS
https://mavlink.io/en/messages/common.html#MAV_RESULT_CANCELLED
https://camera-manager.dronecode.org/en/
http://mavlink.io/en/services/camera.html#migration-notes-for-gcs--mavlink-sdks
http://mavlink.io/en/services/heartbeat.html
https://mavlink.io/en/messages/common.html#MAV_COMP_ID_CAMERA
https://mavlink.io/en/messages/common.html#MAV_COMP_ID_CAMERA6
https://mavlink.io/en/messages/common.html#MAV_COMP_ID_CAMERA6
http://mavlink.io/en/services/camera.html#camera_identification

Camera Protocol RAS-A IOP

Basic Camera Operations

The CAMERA_INFORMATION.flags provides information about camera capabilities.
It contains a bitmap of CAMERA_CAP_FLAGS values that tell the GCS if the camera
supports still image capture, video capture, or video streaming, and if it needs
to be in a certain mode for capture, etc.

Camera Identification The camera identification operation identifies all the
available cameras and determines their capabilities.
Camera identification must be carried out before all other operations!
The first time a heartbeat is received from a new camera component, the GCS
will send it a MAV_CMD_REQUEST_MESSAGE message asking for CAMERA_INFORMATION
(message id 259). The camera will then respond with a COMMAND_ACK message
containing a result. On success (result is MAV_RESULT_ACCEPTED) the camera com-
ponent must then send a CAMERA_INFORMATION message.

Figure 27: Camera Identification Diagram

The operation follows the normal Command Protocol rules for command/acknowledgment
(if no COMMAND_ACK response is received for MAV_CMD_REQUEST_MESSAGE the com-
mand will be re-sent a number of times before failing). If CAMERA_INFORMATION
is not received after receiving an ACK with MAV_RESULT_ACCEPTED, the protocol

148

https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#COMMAND_ACK
https://mavlink.io/en/messages/common.html#MAV_RESULT_ACCEPTED
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION

Camera Protocol RAS-A IOP

assumes the message was lost, and the cycle of sending MAV_CMD_REQUEST_
MESSAGE is repeated. If CAMERA_INFORMATION is still not received after three cycle
repeats, the GCS may assume that the camera is not supported.
The CAMERA_INFORMATION response contains the bare minimum information
about the camera and what it can or cannot do. This is sufficient for basic
image and/or video capture.
If a camera provides finer control over its settings CAMERA_INFORMATION.cam_
definition_uri will include a URI to a Camera Definition File. If this URI exists,
the GCS will request it, parse it and prepare the UI for the user to control the
camera settings.
A GCS that implements this protocol is expected to support HTTP (http://) or
MAVLink FTP (mavlinkftp://) URIs for download of the camera definition file. If
the camera provides an HTTP or MAVLink FTP interface, the definition file can
be hosted on the camera itself. Otherwise, it can be hosted anywhere (on any
reachable server).
The CAMERA_INFORMATION.cam_definition_version field should provide a version
for the definition file, allowing the GCS to cache it. Once downloaded, it would
only be requested again if the version number changes.
If a vehicle has more than one camera, each camera will have a different
component ID and send its own heartbeat. The GCS should create multiple
instances of a camera controller based on the component ID of each camera.
All commands are sent to a specific camera by addressing the command to a
specific component ID.

Camera Modes Some cameras must be in a certain mode for still and/or
video capture.
The GCS can determine if it needs to make sure the camera is in the
proper mode prior to sending a start capture (image or video) command by
checking whether the CAMERA_CAP_FLAGS_HAS_MODES bit is set true in CAMERA_
INFORMATION.flags.
In addition, some cameras can capture images in any mode but with different
resolutions. For example, a 20 megapixel camera would take a full resolution
image when set to CAMERA_MODE_IMAGE but only at the current video resolution if
it is set to CAMERA_MODE_VIDEO.
To get the current mode, the GCS would send a MAV_CMD_REQUEST_MESSAGE com-
mand asking for CAMERA_SETTINGS. The camera component will then respond with
a COMMAND_ACK message containing a result. On success (COMMAND_ACK.result is
MAV_RESULT_ACCEPTED) the camera must then send a CAMERA_SETTINGS message.
The current mode is the CAMERA_SETTINGS.mode_id field.
The sequence is shown below:

149

http://mavlink.io/en/services/camera_def.html
http://mavlink.io/en/services/ftp.html
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_HAS_MODES
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_SETTINGS
https://mavlink.io/en/messages/common.html#COMMAND_ACK
https://mavlink.io/en/messages/common.html#MAV_RESULT_ACCEPTED
https://mavlink.io/en/messages/common.html#CAMERA_SETTINGS

Camera Protocol RAS-A IOP

Figure 28: Camera Setting Diagram

Command acknowledgment and message resending is handled in the same
way as for camera identification (if a successful ACK is received the camera
will expect the CAMERA_SETTINGS message, and repeat the cycle - up to 3
times - until it is received).
To set the camera to a specific mode, the GCS would send the MAV_CMD_SET_
CAMERA_MODE command with the appropriate mode.
The sequence is shown below:
The operation follows the normal Command Protocol rules for command/acknowledgment.

Storage Status Before capturing images and/or videos, a GCS should query
the storage status to determine if the camera has enough free space for these
operations (and provide the user with feedback as to the current storage sta-
tus). The GCS will send the MAV_CMD_REQUEST_MESSAGE command and it expects
a COMMAND_ACK message back as well as a STORAGE_INFORMATION response. For for-
matting (or erasing depending on your implementation), the GCS will send a
MAV_CMD_STORAGE_FORMAT command.

Camera Capture Status In addition to querying about storage status, the
GCS will also request the current Camera Capture Status in order to provide

150

http://mavlink.io/en/services/camera.html#camera_identification
https://mavlink.io/en/messages/common.html#MAV_CMD_SET_CAMERA_MODE
https://mavlink.io/en/messages/common.html#MAV_CMD_SET_CAMERA_MODE
https://mavlink.io/en/messages/common.html#COMMAND_ACK
https://mavlink.io/en/messages/common.html#STORAGE_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_STORAGE_FORMAT

Camera Protocol RAS-A IOP

Figure 29: Specific Mode Camera Setting Diagram

151

Camera Protocol RAS-A IOP

the user with proper UI indicators. The GCS will send a MAV_CMD_REQUEST_MESSAGE
command asking for CAMERA_CAPTURE_STATUS and it expects a COMMAND_ACK mes-
sage back as well as a CAMERA_CAPTURE_STATUS response.

Still Image Capture A camera supports still image capture if the CAMERA_CAP_
FLAGS_CAPTURE_IMAGE bit is set in CAMERA_INFORMATION.flags.
A GCS/MAVLink app uses the MAV_CMD_IMAGE_START_CAPTURE command to request
that the camera capture a specified number of images (or forever), and the
duration between them. The camera immediately returns the normal command
acknowledgment (MAV_RESULT_ACCEPTED).
Each time an image is captured, the camera broadcasts a CAMERA_IMAGE_CAPTURED
message. This message not only tells the GCS the image was captured, it is
also intended for geo-tagging.
The camera must iterate CAMERA_IMAGE_CAPTURED.image_index and the counter
used in CAMERA_CAPTURE_STATUS.image_count for every new image capture (these
values iterate until explicitly cleared using MAV_CMD_STORAGE_FORMAT). The index
and total image count can be used to re-request missing images (e.g. images
captured when the vehicle was out of telemetry range).
The MAV_CMD_IMAGE_STOP_CAPTURE command can optionally be sent to stop an im-
age capture sequence (this is needed if image capture has been set to continue
forever).
The still image capture message sequence for missions (as described above)
is shown below:
The message sequence for interactive user-initiated image capture through a
GUI is slightly different. In this case the GCS should:

• Confirm that the camera is ready to take images before allowing the user
to request image capture.

∘ It does this by sending MAV_CMD_REQUEST_MESSAGE asking for CAMERA_
CAPTURE_STATUS.

∘ The camera should return a MAV_RESULT and then CAMERA_CAPTURE_
STATUS.

∘ The GCS should check that the status is “Idle” before enabling camera
capture in the GUI.

• Send MAV_CMD_IMAGE_START_CAPTURE specifying a single image (only).
The sequence is as shown below:

Request Lost CAMERA_IMAGE_CAPTURED Messages The camera broad-
casts a CAMERA_IMAGE_CAPTURED every time a new image is captured, iterating

152

https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#COMMAND_ACK
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_CAPTURE_IMAGE
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_CAPTURE_IMAGE
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_RESULT_ACCEPTED
https://mavlink.io/en/messages/common.html#CAMERA_IMAGE_CAPTURED
https://mavlink.io/en/messages/common.html#MAV_CMD_STORAGE_FORMAT
https://mavlink.io/en/messages/common.html#MAV_CMD_IMAGE_STOP_CAPTURE
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#CAMERA_IMAGE_CAPTURED

Camera Protocol RAS-A IOP

Figure 30: Image Capturing Diagram

153

Camera Protocol RAS-A IOP

Figure 31: Single Image Capturing Diagram

154

Camera Protocol RAS-A IOP

both the current image index (CAMERA_IMAGE_CAPTURED.image_index) and the total
image count (CAMERA_CAPTURE_STATUS.image_count).
These messages can be lost during transmission; for example if the vehicle is
out of datalink range of the ground stations.
Lost image capture messages can be detected by comparing GCS and cam-
era image counts. Individual entries can be requested using MAV_CMD_REQUEST_
MESSAGE, where param1="MAVLINK_MSG_ID_CAMERA_IMAGE_CAPTURED" and param2="the
index of the missing image".
The camera image log iterates “forever” (but may be explicitly reset using MAV_
CMD_STORAGE_FORMAT.param3=1).

Video Capture A camera supports video capture if the CAMERA_CAP_FLAGS_
CAPTURE_VIDEO bit is set in CAMERA_INFORMATION.flags.
To start recording videos, the GCS uses the MAV_CMD_VIDEO_START_CAPTURE com-
mand. If requested, the CAMERA_CAPTURE_STATUS message is sent to the GCS at a
set interval.
To stop recording, the GCS uses the MAV_CMD_VIDEO_STOP_CAPTURE command.

Video Streaming The GCS should already have identified all connected cam-
eras by their heartbeat and followed the Camera Identification steps to get
CAMERA_INFORMATION for every camera.
A camera is capable of streaming video if it sets the CAMERA_CAP_FLAGS_HAS_VIDEO_
STREAM bit set in CAMERA_INFORMATION.flags.
The sequence for requesting all video streams from a particular camera is
shown below:
The steps are:
1. GCS follows the Camera Identification steps to get CAMERA_INFORMATION for
every camera.

2. GCS checks if CAMERA_INFORMATION.flags contains the CAMERA_CAP_FLAGS_HAS_
VIDEO_STREAM flag.

3. If so, the GCS sends the MAV_CMD_REQUEST_MESSAGE message to the cam-
era requesting the video streaming configuration (param1=269) for all
streams (param2=0). A GCS can also request information for a particular
stream by setting its id in param2.

4. Camera returns a VIDEO_STREAM_INFORMATION message for the specified
stream or all streams it supports.

If your camera only provides video streaming and nothing else (no camera
features), the CAMERA_CAP_FLAGS_HAS_VIDEO_STREAM flag is the only flag you need

155

https://mavlink.io/en/messages/common.html#MAV_CMD_STORAGE_FORMAT
https://mavlink.io/en/messages/common.html#MAV_CMD_STORAGE_FORMAT
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_CAPTURE_VIDEO
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_CAPTURE_VIDEO
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
http://mavlink.io/en/services/camera.html#camera_identification
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_HAS_VIDEO_STREAM
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_HAS_VIDEO_STREAM
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
http://mavlink.io/en/services/camera.html#camera_identification
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_HAS_VIDEO_STREAM
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_HAS_VIDEO_STREAM
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_HAS_VIDEO_STREAM

Camera Protocol RAS-A IOP

Figure 32: Video Streaming Diagram

156

Camera Protocol RAS-A IOP

to set. The GCS will then provide video streaming support and skip camera
control.
Note: Each camera component is supposed to report a single video
stream URI. A different video stream or source should be associated
with a different camera component ID.

Battery Status Camera components that are powered from their own bat-
tery should publish BATTERY_STATUS messages.
Other components like a GCS will typically only use the camera BATTERY_
STATUS.battery_remaining field (or possibly time_remaining); generally other
fields can be set as “not supported”.

Message/Enum Summary

Table 109: Messages

Message Description Status
MAV_CMD_REQUEST_
MESSAGE

Send command to request any
message

to be used

CAMERA_
INFORMATION

Basic information about camera
including supported features and URI
link to extended information (cam_
definition_uri field).

CAMERA_SETTINGS Timestamp and camera mode
information.

MAV_CMD_SET_
CAMERA_MODE

Send command to set CAMERA_MODE.

VIDEO_STREAM_
INFORMATION

Information defining a video stream
configuration. If a camera has more
than one video stream, it would send
one of these for each video stream,
with their specific configuration. Each
stream must have its own, unique
stream_id.

VIDEO_STREAM_
STATUS

Information updating a video stream
configuration.

STORAGE_
INFORMATION

Storage information (e.g. number and
type of storage devices,
total/used/available capacity,
read/write speeds).

MAV_CMD_STORAGE_
FORMAT

Send command to format the specified
storage device.

157

https://mavlink.io/en/messages/common.html#BATTERY_STATUS
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_MESSAGE
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_MESSAGE
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_SETTINGS
https://mavlink.io/en/messages/common.html#MAV_CMD_SET_CAMERA_MODE
https://mavlink.io/en/messages/common.html#MAV_CMD_SET_CAMERA_MODE
https://mavlink.io/en/services/camera.html#CAMERA_MODE
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_INFORMATION
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_INFORMATION
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_STATUS
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_STATUS
https://mavlink.io/en/messages/common.html#STORAGE_INFORMATION
https://mavlink.io/en/messages/common.html#STORAGE_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_STORAGE_FORMAT
https://mavlink.io/en/messages/common.html#MAV_CMD_STORAGE_FORMAT

Camera Protocol RAS-A IOP

Message Description Status
CAMERA_CAPTURE_
STATUS

Camera capture status, including
current capture type (if any), capture
interval, available capacity.

MAV_CMD_IMAGE_
START_CAPTURE

Send command to start image capture,
specifying the duration between
captures and total number of images to
capture.

MAV_CMD_IMAGE_
STOP_CAPTURE

Send command to stop image capture.

CAMERA_IMAGE_
CAPTURED

Information about image captured
(returned to GPS every time an image
is captured).

MAV_CMD_VIDEO_
START_CAPTURE

Send command to start video capture,
specifying the frequency that CAMERA_
CAPTURE_STATUS messages should be
sent while recording.

MAV_CMD_VIDEO_
STOP_CAPTURE

Send command to stop video capture.

CAMERA_IMAGE_
CAPTURED

Information about image captured
(returned to GPS every time an image
is captured).

MAV_CMD_VIDEO_
START_STREAMING

Send command to start video
streaming for the given Stream ID
(stream_id.) This is mostly for
streaming protocols that push a stream.
If your camera uses a connection based
streaming configuration (RTSP, TCP,
etc.), you may ignore it if you don’t
need it but note that you still must ACK
the command, like all MAV_CMD_XXX
commands. When using a connection
based streaming configuration, the GCS
will connect the stream from its side.
When a camera offers more than one
stream and the user switches from one
stream to another, the GCS will send a
MAV_CMD_VIDEO_STOP_STREAMING command
targeting the current Stream ID
followed by a MAV_CMD_VIDEO_START_
STREAMING targeting the newly selected
Stream ID.

158

https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#MAV_CMD_IMAGE_START_CAPTURE
https://mavlink.io/en/messages/common.html#MAV_CMD_IMAGE_START_CAPTURE
https://mavlink.io/en/messages/common.html#MAV_CMD_IMAGE_STOP_CAPTURE
https://mavlink.io/en/messages/common.html#MAV_CMD_IMAGE_STOP_CAPTURE
https://mavlink.io/en/messages/common.html#CAMERA_IMAGE_CAPTURED
https://mavlink.io/en/messages/common.html#CAMERA_IMAGE_CAPTURED
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_START_CAPTURE
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_START_CAPTURE
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_STOP_CAPTURE
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_STOP_CAPTURE
https://mavlink.io/en/messages/common.html#CAMERA_IMAGE_CAPTURED
https://mavlink.io/en/messages/common.html#CAMERA_IMAGE_CAPTURED
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_START_STREAMING
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_START_STREAMING
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_STOP_STREAMING
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_START_STREAMING
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_START_STREAMING

Camera Protocol RAS-A IOP

Message Description Status
MAV_CMD_VIDEO_
STOP_STREAMING

Send command to stop video streaming
for the given Stream ID (stream_id.)
This is mostly for streaming protocols
that push a stream. If your camera
uses a connection based streaming
configuration (RTSP, TCP, etc.), you
may ignore it if you don’t need it but
note that you still must ACK the
command, like all MAV_CMD_XXX
commands. When using a connection
based streaming configuration, the GCS
will disconnect the stream from its side.
When a camera offers more than one
stream and the user switches from one
stream to another, the GCS will send a
MAV_CMD_VIDEO_STOP_STREAMING command
targeting the current Stream ID
followed by a MAV_CMD_VIDEO_START_
STREAMING targeting the newly selected
Stream ID.

MAV_CMD_REQUEST_
CAMERA_SETTINGS

Send command to request CAMERA_
SETTINGS.

deprecated

MAV_CMD_REQUEST_
CAMERA_
INFORMATION

Send command to request CAMERA_
INFORMATION.

deprecated

MAV_CMD_REQUEST_
VIDEO_STREAM_
INFORMATION

Send command to request VIDEO_
STREAM_INFORMATION. This is sent once for
each camera when a camera is
detected and it has set the CAMERA_CAP_
FLAGS_HAS_VIDEO_STREAM flag within the
CAMERA_INFORMATION message flags field.

deprecated

MAV_CMD_REQUEST_
VIDEO_STREAM_
STATUS

Send command to request VIDEO_
STREAM_STATUS. This is sent whenever
there is a mode change (when MAV_CMD_
SET_CAMERA_MODE is sent.) It allows the
camera to update the stream
configuration when a camera mode
change occurs.

deprecated

MAV_CMD_REQUEST_
STORAGE_
INFORMATION

Send command to request STORAGE_
INFORMATION.

deprecated

159

https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_STOP_STREAMING
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_STOP_STREAMING
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_STOP_STREAMING
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_START_STREAMING
https://mavlink.io/en/messages/common.html#MAV_CMD_VIDEO_START_STREAMING
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_CAMERA_SETTINGS
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_CAMERA_SETTINGS
https://mavlink.io/en/messages/common.html#CAMERA_SETTINGS
https://mavlink.io/en/messages/common.html#CAMERA_SETTINGS
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_VIDEO_STREAM_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_VIDEO_STREAM_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_VIDEO_STREAM_INFORMATION
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_INFORMATION
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_INFORMATION
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_HAS_VIDEO_STREAM
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS_HAS_VIDEO_STREAM
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_VIDEO_STREAM_STATUS
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_VIDEO_STREAM_STATUS
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_VIDEO_STREAM_STATUS
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_STATUS
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_STATUS
https://mavlink.io/en/messages/common.html#MAV_CMD_SET_CAMERA_MODE
https://mavlink.io/en/messages/common.html#MAV_CMD_SET_CAMERA_MODE
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_STORAGE_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_STORAGE_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_STORAGE_INFORMATION
https://mavlink.io/en/messages/common.html#STORAGE_INFORMATION
https://mavlink.io/en/messages/common.html#STORAGE_INFORMATION

Gimbal Protocol v2 RAS-A IOP

Message Description Status
MAV_CMD_REQUEST_
CAMERA_CAPTURE_
STATUS

Send command to request CAMERA_
CAPTURE_STATUS.

deprecated

Table 110: Enum

Enum Description
CAMERA_CAP_FLAGS Camera capability flags (Bitmap). For example:

ability to capture images in video mode, support for
survey mode etc. Received in CAMERA_INFORMATION.

CAMERA_MODE Camera mode (image, video, survey etc.). Received
in CAMERA_SETTINGS.

VIDEO_STREAM_TYPE Type of stream - e.g. RTSP, MPEG. Received in VIDEO_
STREAM_INFORMATION.

VIDEO_STREAM_STATUS_
FLAGS

Bitmap of stream status flags - e.g. zoom, thermal
imaging, etc. Received in VIDEO_STREAM_INFORMATION.

Gimbal Protocol v2
Introduction

The gimbal protocol allows MAVLink control over the attitude/orientation of
cameras (or other sensors) mounted on the drone. The orientation can be:
controlled by the pilot in real time (e.g. using a joystick from a ground station),
set as part of a mission, or moved based on camera tracking.
The protocol also defines what status information is published for developers,
configurators, as well as users of the drone. It additionally provides ways to
assign control to different sources.
The protocol supports a number of hardware setups, and enables gimbals with
varying capabilities.

Concepts

Gimbal Manager and Gimbal Device To accommodate gimbals with vary-
ing capabilities, and various hardware setups, “a gimbal” is conceptually split
into two parts:

• Gimbal Device: the actual gimbal device, hardware and software.
• Gimbal Manager: software to deconflict gimbal messages and com-
mands from different sources, and to abstract the capabilities of the
Gimbal Device from gimbal users.

160

https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#CAMERA_CAPTURE_STATUS
https://mavlink.io/en/messages/common.html#CAMERA_CAP_FLAGS
https://mavlink.io/en/messages/common.html#CAMERA_INFORMATION
https://mavlink.io/en/services/camera.html#CAMERA_MODE
https://mavlink.io/en/messages/common.html#CAMERA_SETTINGS
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_TYPE
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_INFORMATION
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_INFORMATION
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_TYPE
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_TYPE
https://mavlink.io/en/messages/common.html#VIDEO_STREAM_INFORMATION

Gimbal Protocol v2 RAS-A IOP

The Gimbal Manager and Gimbal Device expose respective message sets that
can be used for: gimbal manager/device discovery, querying capabilities, pub-
lishing status, and various types of orientation/attitude control.
The key concept to understand is that a Gimbal Manager has a 1:1 relationship
with a particular Gimbal Device, and is the only party on the MAVLink network
that is allowed to directly command that device - it does so using the Gimbal
Device message set.
MAVLink applications (ground stations, developer APIs like the MAVSDK, etc.),
and any other software that wants to control a particular gimbal, must do so
via its Gimbal Manager, using the Gimbal Manager message set.
Note that the gimbal manager is (by default) implemented on the autopilot.

Common Set-ups This section outlines the three most common hardware
set-ups.

Simple Gimbal Directly Connected to Autopilot In this (default) set-up
the autopilot takes the role of the gimbal manager.

Figure 33: Simple Gimbal Diagram

Standalone Integrated Camera/Gimbal In this set-up the integrated cam-
era/gimbal itself can be the Gimbal Manager.
Therefore, the gimbal device interface is internal (no implementation is re-
quired).

Figure 34: Standalone Integrated Camera/Gimbal Diagram

Onboard Computer with Camera and Gimbal Connected to Autopilot
In this set-up the Gimbal Manager can be on the onboard computer.

161

Gimbal Protocol v2 RAS-A IOP

Commands from the GCS (etc.) are sent to the Gimbal Manager on the com-
panion computer. Messages from the Gimbal Manager to the Gimbal Device
need to be sent to/routed through the autopilot.

Figure 35: Onboard Computer with Camera and Gimbal Diagram

Multiple Gimbals Multiple gimbals per drone are supported.

Component IDs Multiple component IDs are reserved for gimbal devices:
MAV_COMP_ID_GIMBAL, MAV_COMP_ID_GIMBAL2, MAV_COMP_ID_GIMBAL3,
MAV_COMP_ID_GIMBAL4, MAV_COMP_ID_GIMBAL5, MAV_COMP_ID_GIMBAL6.
The listed component IDs should be used where possible (other ids may be
used as long as the MAV_TYPE is correctly set to MAV_TYPE_GIMBAL).

Mapping from Gimbal Managers to Gimbal Devices Every Gimbal Man-
ager must publish its associated Gimbal Device (there is a 1:1 relationship) in
its GIMBAL_MANAGER_INFORMATION message.
A particular MAVLink component can implement multiple gimbal managers
(e.g. an autopilot can implement two gimbal managers in order to control two
gimbal devices).

Addressing of Gimbal Devices Gimbal Manager commands and messages
have a param field to indicate the component ID of the Gimbal Device that they
intend to control.
A system that wants to control a particular gimbal device will send messages
to the component that has the manager(s), specifying the particular device to
be controlled.
If all gimbal devices should be controlled (on the component that has the gimbal
managers), this param/field can be set to 0 (signalling “all”).

162

https://mavlink.io/en/services/heartbeat.html#MAV_TYPE
https://mavlink.io/en/messages/common.html#MAV_TYPE_GIMBAL
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_INFORMATION

Gimbal Protocol v2 RAS-A IOP

Implementation and Messages

Messages between Ground Station and Gimbal Manager

Discovery of Gimbal Manager A ground station should initially discover all
gimbal managers by sending a broadcast MAV_CMD_REQUEST_MESSAGE for GIMBAL_
MANAGER_INFORMATION. Every gimbal manager should respond with GIMBAL_MAN-
AGER_INFORMATION.
The GIMBAL_MANAGER_INFORMATION contains important information such
as gimbal capabilities (GIMBAL_MANAGER_CAP_FLAGS), maximum angles and angle
rates, as well as the gimbal_component which is the component ID of the
Gimbal Device controlled by this Gimbal Manager.

Gimbal Manager Status AGimbal Manager should send out GIMBAL_MANAGER_
STATUS at a low regular rate (e.g. 5 Hz) to inform the ground station about its
status.

Starting / Configuring Gimbal Control It is possible for multiple compo-
nents to want to control a gimbal at the same time, e.g.: a ground station, a
companion computer, or the autopilot running a mission.
In order to start controlling a gimbal, a component first needs to send the MAV_
CMD_DO_GIMBAL_MANAGER_CONFIGURE command. This allows setting which MAVLink
component (set by system ID and component ID) is in primary control and
which one is in secondary control. The gimbal manager is to ignore any gimbal
controls which come from MAVLink components that are not explicitly set to
“in control”. This should prevent conflicts between various inputs as long as all
components are fair/co-operative when using the configure command.
To be co-operative entails the following rules:

• Don’t send the configure manager configure command continuously but
only once to initiate and once to stop control again.

• Check the GIMBAL_MANAGER_STATUS about who is in control first and - if pos-
sible - warn user about planned action. For example, if the autopilot is in
control of the gimbal as part of a mission, the ground station should ask
the user first (i.e. via a pop-up) if they really want to take over manual
control.

• Don’t forget to release control when an action/task is finished and set the
sysid/compid to 0.

It is possible to assign control to another component too, not just to itself. For
example, a smart shot running on a companion computer can set itself to be in

163

https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_INFORMATION
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_INFORMATION
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_MANAGER_CAP_FLAGS
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_STATUS
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_STATUS
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_STATUS

Gimbal Protocol v2 RAS-A IOP

primary control but assign a ground station for secondary control to e.g. nudge
during the smart shot.
Note The implementation of how primary and secondary control are combined
or mixed is not defined by the protocol but up to the implementation. This
allows flexibility for different use cases.

Manual Gimbal Control usingMAVLink A ground station canmanually con-
trol a gimbal by sending GIMBAL_MANAGER_SET_MANUAL_CONTROL. This allows control-
ling the gimbal with either angles, or angular rates, using a normalized unit
(-1..1). The gimbal device is responsible for translating the input based on
angle, speed, and “smoothness” settings.
This input can additionally be scaled by the gimbal manager depending on
its state. For example, if the gimbal manager is on a camera and knows the
current zoom level / focal length of the camera, it can scale the angular rate
down to support smooth panning and tilting.

Controlling Gimbal Angle and/or Angular Rate usingMAVLink A ground
station, companion computer, or other MAVLink component can set the gimbal
angle and/or angular rates using the messages GIMBAL_MANAGER_SET_ATTITUDE or
GIMBAL_MANAGER_SET_TILTPAN.

Messages between Gimbal Manager and Gimbal Device

Discovery of Gimbal Device The MAVlink node where the Gimbal Manager
is implemented needs to discover Gimbal Devices by sending a broadcast MAV_
CMD_REQUEST_MESSAGE for GIMBAL_DEVICE_INFORMATION. Every gimbal device should
respond with GIMBAL_DEVICE_INFORMATION.
The MAVLink node should then create as many Gimbal Manager instances as
Gimbal Devices found.

Control of a Gimbal Device To control the angle and/or angular rate of the
Gimbal Device, use the message GIMBAL_DEVICE_SET_ATTITUDE. If the gimbal man-
ager has multiple gimbal control inputs available it should deconflict them as
explained below.

Autopilot State for Gimbal Device The autopilot should also send the mes-
sage AUTOPILOT_STATE_FOR_GIMBAL_DEVICE to the gimbal device. This data is re-
quired by the Gimbal Device attitude estimator (horizon compensation), as well
as to anticipate the vehicle’s movements (e.g. the feed forward angular veloc-
ity in z-axis, so the current yaw intention).

164

https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_SET_MANUAL_CONTROL
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_SET_ATTITUDE
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_SET_TILTPAN
http://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_INFORMATION
https://mavlink.io/en/messages/common.html#GIMBAL_DEVICE_SET_ATTITUDE
https://mavlink.io/en/services/gimbal_v2.html#AUTOPILOT_STATE_FOR_GIMBAL_DEVICE

Gimbal Protocol v2 RAS-A IOP

Gimbal Device Broadcast/Status Messages The gimbal device should
send out its attitude and status in GIMBAL_DEVICE_ATTITUDE_STATUS at a regular
rate, e.g. 10 Hz.
This message is meant as broadcast, so it’s set to the GCS, Gimbal Manager,
and all parties on the network (not just Gimbal Manager, like all other mes-
sages).

Custom Gimbal Device Settings Custom gimbal settings can be accom-
plished using the component information microservice which is based on a
component information file (this is similar to the camera definition file).

Message/Command/Enum Summary

Gimbal Manager Messages This is the set of messages/enums for commu-
nicating with the gimbal manager (by ground station, autopilot, etc.).

Table 111: Messages

Message Description
GIMBAL_MANAGER_
INFORMATION

Information about a high level gimbal manager. This
message should be requested by a ground station
using MAV_CMD_REQUEST_MESSAGE.

GIMBAL_MANAGER_STATUS Current status about a high level gimbal manager.
This message should be broadcast at a low regular
rate (e.g. 5Hz).

GIMBAL_MANAGER_SET_
ATTITUDE

High level message to control a gimbal’s attitude.
This message is to be sent to the gimbal manager
(e.g. from a ground station).

Table 112: Commands

Command Description
MAV_CMD_REQUEST_
MESSAGE

Request the target system(s) emit a single instance
of a specified message. This is used to request
GIMBAL_MANAGER_INFORMATION.

MAV_CMD_DO_GIMBAL_
MANAGER_CONFIGURE

Gimbal configuration to set which sysid/compid is in
primary and secondary control.

165

https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_ATTITUDE_STATUS
http://mavlink.io/en/services/component_information.html
http://mavlink.io/en/services/camera_def.html
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_INFORMATION
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_INFORMATION
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_STATUS
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_SET_ATTITUDE
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_SET_ATTITUDE
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_INFORMATION

Gimbal Protocol v2 RAS-A IOP

Command Description
GIMBAL_MANAGER_SET_
MANUAL_CONTROL

High level message to control a gimbal manually, so
without units. The actual angles or angular rates will
be produced by the gimbal manager based on
settings. This message is to be sent to the gimbal
manager (e.g. from a ground station). Angles and
rates can be set to NaN according to use case.

MAV_CMD_DO_GIMBAL_
MANAGER_TILTPAN

High level setpoint to be sent to a gimbal manager to
set a gimbal attitude. Note: a gimbal is never to
react to this command but only the gimbal manager.

MAV_CMD_DO_SET_ROI_
LOCATION

Sets the region of interest (ROI) to a location. This
can then be used by the vehicle’s control system to
control the vehicle attitude and the attitude of
various sensors such as cameras. This command can
be sent to a gimbal manager but not to a gimbal
device. A gimbal is not to react to this message.

MAV_CMD_DO_SET_ROI_
WPNEXT_OFFSET

Sets the region of interest (ROI) to be toward the
next waypoint, with optional pitch/roll/yaw offset.
This can then be used by the vehicle’s control
system to control the vehicle attitude and the
attitude of various sensors such as cameras. This
command can be sent to a gimbal manager but not
to a gimbal device. A gimbal device is not to react to
this message.

MAV_CMD_DO_SET_ROI_
SYSID

Mount tracks system with specified system ID.
Determination of target vehicle position may be
done with GLOBAL_POSITION_INT or any other
means. This command can be sent to a gimbal
manager but not to a gimbal device. A gimbal device
is not to react to this message.

MAV_CMD_DO_SET_ROI_
NONE

Cancels any previous ROI command returning the
vehicle/sensors to default flight characteristics. This
can then be used by the vehicle’s control system to
control the vehicle attitude and the attitude of
various sensors such as cameras. This command can
be sent to a gimbal manager but not to a gimbal
device. A gimbal device is not to react to this
message. After this command the gimbal manager
should go back to manual input if available, and
otherwise assume a neutral position.

166

https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_SET_MANUAL_CONTROL
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_SET_MANUAL_CONTROL
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_GIMBAL_MANAGER_TILTPAN
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_GIMBAL_MANAGER_TILTPAN
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_ROI_LOCATION
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_ROI_LOCATION
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_ROI_WPNEXT_OFFSET
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_ROI_WPNEXT_OFFSET
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_ROI_SYSID
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_ROI_SYSID
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_ROI_NONE
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_ROI_NONE

Gimbal Protocol v2 RAS-A IOP

Command Description
MAV_CMD_DO_GIMBAL_
MANAGER_TRACK_POINT

If the gimbal manager supports visual tracking
(GIMBAL_MANAGER_CAP_FLAGS_HAS_TRACKING_POINT is set),
this command initiates the tracking. Such a tracking
gimbal manager would usually be an integrated
camera/gimbal, or alternatively a companion
computer connected to a camera.

MAV_CMD_DO_GIMBAL_
MANAGER_TRACK_
RECTANGLE

If the gimbal supports visual tracking (GIMBAL_
MANAGER_CAP_FLAGS_HAS_TRACKING_RECTANGLE is set), this
command initiates the tracking. Such a tracking
gimbal manager would usually be an integrated
camera/gimbal, or alternatively a companion
computer connected to a camera.

Table 113: Enum

Enum Description
GIMBAL_MANAGER_FLAGS Flags for high level gimbal manager operation. The

first 16 bytes are identical to the GIMBAL_DEVICE_FLAGS.
Used in MAV_CMD_DO_GIMBAL_MANAGER_TILTPAN, GIMBAL_
MANAGER_STATUS, GIMBAL_MANAGER_SET_ATTITUDE.

GIMBAL_MANAGER_CAP_
FLAGS

Gimbal manager high level capability flags (bitmap).
The first 16 bits are identical to the GIMBAL_DEVICE_
CAP_FLAGS which are identical with GIMBAL_DEVICE_
FLAGS. However, the gimbal manager does not need
to copy the flags from the gimbal but can also
enhance the capabilities and thus add flags. Used in
GIMBAL_MANAGER_INFORMATION

Gimbal Device Messages This is the set of messages/enums for communi-
cation between the gimbal manager and the gimbal device.

Table 114: Messages

Message Description
GIMBAL_DEVICE_
INFORMATION

Information about a low level gimbal. This message
should be requested by the gimbal manager or a
ground station using MAV_CMD_REQUEST_MESSAGE.

167

http://mavlink.io/en/messages/common.html#MAV_CMD_DO_GIMBAL_MANAGER_TRACK_POINT
http://mavlink.io/en/messages/common.html#MAV_CMD_DO_GIMBAL_MANAGER_TRACK_POINT
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_GIMBAL_MANAGER_TRACK_RECTANGLE
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_GIMBAL_MANAGER_TRACK_RECTANGLE
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_GIMBAL_MANAGER_TRACK_RECTANGLE
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_FLAGS
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_FLAGS
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_GIMBAL_MANAGER_TILTPAN
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_STATUS
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_STATUS
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_SET_ATTITUDE
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_MANAGER_CAP_FLAGS
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_MANAGER_CAP_FLAGS
https://mavlink.io/en/messages/common.html#GIMBAL_MANAGER_INFORMATION
http://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_INFORMATION
http://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_INFORMATION

Gimbal Protocol v2 RAS-A IOP

Message Description
GIMBAL_DEVICE_SET_
ATTITUDE

Low level message to control a gimbal device’s
attitude. This message is to be sent from the gimbal
manager to the gimbal device component. Angles
and rates can be set to NaN according to use case.

GIMBAL_DEVICE_
ATTITUDE_STATUS

Message reporting the status of a gimbal device.
This message should be broadcasted by a gimbal
device component.

Table 115: Commands

Command Description
MAV_CMD_REQUEST_
MESSAGE

Request the target system(s) emit a single instance
of a specified message. This is used to request
GIMBAL_DEVICE_INFORMATION.

Table 116: Enum

Enum Description
GIMBAL_DEVICE_CAP_
FLAGS

Gimbal device (low level) capability flags (bitmap).
Used in GIMBAL_DEVICE_INFORMATION.

GIMBAL_DEVICE_FLAGS Flags for gimbal device (lower level) operation. Used
in GIMBAL_DEVICE_ATTITUDE_STATUS and GIMBAL_DEVICE_
SET_ATTITUDE.

GIMBAL_DEVICE_ERROR_
FLAGS

Gimbal device (low level) error flags (bitmap, 0
means no error). Used in GIMBAL_DEVICE_ATTITUDE_
STATUS.

Sequences

Depicted below are message sequences for some common scenarios.

Discovery This shows a possible sequence on startup. Note that the gimbal
manager could already discover the gimbal device before the ground station
asks for the information.

Normal Manual Control During the normalmanual control, all messages are
streamed at a regular rate. Note that GIMBAL_DEVICE_ATTITUDE_STATUS is broad-
cast to anyone, so to the gimbal manager and also the ground station.

168

https://mavlink.io/en/messages/common.html#GIMBAL_DEVICE_SET_ATTITUDE
https://mavlink.io/en/messages/common.html#GIMBAL_DEVICE_SET_ATTITUDE
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_ATTITUDE_STATUS
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_ATTITUDE_STATUS
http://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_INFORMATION
https://mavlink.io/en/messages/common.html#GIMBAL_DEVICE_CAP_FLAGS
https://mavlink.io/en/messages/common.html#GIMBAL_DEVICE_CAP_FLAGS
http://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_INFORMATION
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_FLAGS
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_ATTITUDE_STATUS
https://mavlink.io/en/messages/common.html#GIMBAL_DEVICE_SET_ATTITUDE
https://mavlink.io/en/messages/common.html#GIMBAL_DEVICE_SET_ATTITUDE
https://mavlink.io/en/messages/common.html#GIMBAL_DEVICE_ERROR_FLAGS
https://mavlink.io/en/messages/common.html#GIMBAL_DEVICE_ERROR_FLAGS
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_ATTITUDE_STATUS
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_ATTITUDE_STATUS
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_ATTITUDE_STATUS

Gimbal Protocol v2 RAS-A IOP

Figure 36: Discovery Diagram

Figure 37: Normal Manual Control Diagram

Figure 38: ROI Ground Station Initiated Diagram

169

Gimbal Protocol v2 RAS-A IOP

ROI Initiated from Ground Station ROI can be started using a command
and should also be stopped again with a command. The ROI command is trans-
lated to a gimbal attitude in the gimbal manager.

Figure 39: Attitude Set during Mission Diagram

Attitude Set During Mission In this case the gimbal manager is imple-
mented by the autopilot which “sends” the attitude command (for instance
for a survey).

How to Implement the Gimbal Device Interface

Below is a short summary of all messages that a gimbal device should imple-
ment.
A Gimbal Device can be tested by connecting it to an autopilot with a Gimbal
Manager. To avoid having to do a full setup including autopilot, a direct test
using MAVSDK is available.

Messages to Send The messages listed should be sent to all connections
(sent to everyone).

HEARTBEAT Heartbeats should always be sent (usually at 1 Hz).
• sysid: Ignored, can be any number
• compid: MAV_COMP_ID_GIMBAL
• type: MAV_TYPE_GIMBAL

170

https://github.com/mavlink/MAVSDK/tree/develop/examples/gimbal_device_tester
https://github.com/mavlink/MAVSDK/tree/develop/examples/gimbal_device_tester
https://mavlink.io/en/messages/common.html#HEARTBEAT
https://mavlink.io/en/messages/common.html#MAV_COMP_ID_GIMBAL
https://mavlink.io/en/messages/common.html#MAV_TYPE_GIMBAL

Gimbal Protocol v2 RAS-A IOP

• autopilot: MAV_AUTOPILOT_INVALID
• base_mode: 0
• custom_mode: 0
• system_status: MAV_STATE_UNINIT

GIMBAL_DEVICE_ATTITUDE_STATUS
The gimbal device should send out its attitude status at a regular rate, e.g. 10
Hz. The fields target_system and target_component can be set to 0 (broadcast)
by default.

GIMBAL_DEVICE_INFORMATION
The static information about the gimbal device needs to be sent out when re-
quested using MAV_CMD_REQUEST_MESSAGE.

Messages to Listen To/Handle

GIMBAL_DEVICE_SET_ATTITUDE
This is the actual attitude setpoint that the gimbal device should follow. Note
that the frame of the quaternion setpoint depends on the GIMBAL_DEVICE_FLAGS.

AUTOPILOT_STATE_FOR_GIMBAL_DEVICE
The gimbal device should be able to get all the information from the autopilot
that it requires in this one message. If something is missing that should be
streamed at a high rate, it should be added to this message.
If this message is not sent by default by the autopilot, or the rate is not ok, the
command MAV_CMD_SET_MESSAGE_INTERVAL can be used to request it at a certain
rate.

COMMAND_LONG
The gimbal device needs to check for commands. See below which commands
should get answered.

Commands to Answer

MAV_CMD_REQUEST_MESSAGE
The gimbal device should send out messages when they get requested,
e.g. GIMBAL_DEVICE_INFORMATION.

MAV_CMD_SET_MESSAGE_INTERVAL
The gimbal device should stream messages at the rate requested.

171

https://mavlink.io/en/messages/common.html#MAV_AUTOPILOT_INVALID
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_ATTITUDE_STATUS
http://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_INFORMATION
https://mavlink.io/en/messages/common.html#GIMBAL_DEVICE_SET_ATTITUDE
https://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_FLAGS
https://mavlink.io/en/services/gimbal_v2.html#AUTOPILOT_STATE_FOR_GIMBAL_DEVICE
https://mavlink.io/en/messages/common.html#MAV_CMD_SET_MESSAGE_INTERVAL
https://mavlink.io/en/messages/common.html#COMMAND_LONG
http://mavlink.io/en/services/gimbal_v2.html#GIMBAL_DEVICE_INFORMATION
https://mavlink.io/en/messages/common.html#MAV_CMD_SET_MESSAGE_INTERVAL

Terrain Protocol RAS-A IOP

Terrain Protocol
The Terrain Protocol provides a mechanism for a vehicle to get terrain infor-
mation (tiles) from a ground station, and for a ground station to check the au-
topilot terrain cache for a tile at a particular location. Support for this protocol
is indicated by AUTOPILOT_VERSION.capabilities by the MAV_PROTOCOL_CAPABILITY_
TERRAIN flag.
A vehicle that supports this capability must also support terrain following in
missions using the data. Note however that a vehicle may also support ter-
rain handling in missions using a distance sensor, even if this protocol is not
supported and capability flag is not set.
Message/Enum Summary

Table 117: Messages

Message Description
TERRAIN_REQUEST Request from drone (to GCS) for terrain data. The

message specifies a mask indicating what tiles are
required, and the GCS responds by sending
TERRAIN_DATA for each tile. The drone will also
stream TERRAIN_REPORT messages to provide
progress updates while it is waiting for data.

TERRAIN_DATA Terrain data from GCS for a particular tile (sent in
response to a TERRAIN_REQUEST. The lat/lon and
grid_spacing must be the same as the lat/lon from
a TERRAIN_REQUEST.

TERRAIN_REPORT The drone will stream TERRAIN_REPORT to indicate
progress of terrain download, and in response to a
TERRAIN_CHECK.

TERRAIN_CHECK Request that the vehicle report terrain height at
the given location (expected response is a
TERRAIN_REPORT). Used by GCS to check if a vehicle
has all terrain data needed for a mission.

Autopilot Terrain Map Request

The sequence for a drone to update its terrain altitude information is entirely
driven by the drone, and is shown below.
In summary, the sequence is:
1. Drone sends TERRAIN_REQUEST to the GCS to request a set of tiles (specified
in a mask).

172

http://mavlink.io/en/messages/common.html#MAV_PROTOCOL_CAPABILITY_TERRAIN
http://mavlink.io/en/messages/common.html#MAV_PROTOCOL_CAPABILITY_TERRAIN
http://mavlink.io/en/messages/common.html#TERRAIN_REQUEST
http://mavlink.io/en/messages/common.html#TERRAIN_DATA
http://mavlink.io/en/messages/common.html#TERRAIN_REPORT
http://mavlink.io/en/messages/common.htmlTERRAIN_CHECK
http://mavlink.io/en/messages/common.html#TERRAIN_REQUEST

Terrain Protocol RAS-A IOP

Figure 40: Autopilot Terrain Map Diagram

173

Terrain Protocol RAS-A IOP

2. The GCS responds by sending a TERRAIN_DATA message for each tile set in
the mask

3. The drone also streams TERRAIN_REPORT) messages back to the GCS indicat-
ing the current state of the download

• TERRAIN_REPORT.pending and TERRAIN_REPORT.loaded indicate how many
tiles are expected and have arrived, respectively.

• TERRAIN_REPORT.lat, .lon, .terrain_height, while duplicated in other
messages, are useful for debugging (a GCS can check its own internal
terrain data against the information).

4. The drone must maintain its own record of what tiles have arrived/not
arrived, and can re-request any that are missing using a further TERRAIN_
REQUEST (with mask indicating just the missing tiles).

The diagram below shows the way the data is encoded within the TERRAIN_
REQUEST and TERRAIN_DATA.

Figure 41: Terrain Request Data Table

TERRAIN_REQUEST.mask is a 64-bit value that represents a row major 8x7 array of
(4x4) tiles. The lat, lon fields indicate the position of the South-West corner of
the first grid position (tile). The tiles are allocated sequentially in rows (West

174

http://mavlink.io/en/messages/common.html#TERRAIN_DATA
http://mavlink.io/en/messages/common.html#TERRAIN_REPORT
http://mavlink.io/en/messages/common.html#TERRAIN_REQUEST
http://mavlink.io/en/messages/common.html#TERRAIN_REQUEST
http://mavlink.io/en/messages/common.html#TERRAIN_REQUEST
http://mavlink.io/en/messages/common.html#TERRAIN_REQUEST
http://mavlink.io/en/messages/common.html#TERRAIN_DATA
http://mavlink.io/en/messages/common.html#TERRAIN_REQUEST

Terrain Protocol RAS-A IOP

to East) starting from the lowest significant bit of mask, and then in columns
(South to North).
Each tile represents a 4x4 grid of altitude information. The spacing between
the rows/columns in the tile is indicated by grid_spacing (the same value must
be used in both request and data messages).

GCS Terrain Tile Check

The sequence for a GCS to check the autopilot terrain cache at a particular
location is shown below.

Figure 42: GCS Terrain Tile Check Diagram

In summary, the sequence is:
1. GCS sends TERRAIN_CHECK to the vehicle to request terrain information at a
specific location.

2. The drone responds with a TERRAIN_REPORT message containing the tile in-
formation it has for that location. If it does not have tile information for
the specified location, then the request is ignored.

3. GCS can verify that the terrain report matches a terrain check by compar-
ing the latitude/longitude fields for both messages.

The protocol does not define how the ground station handles the case if no
TERRAIN_REPORT is received (although it might resend the request after a time-
out).

175

Exploration Protocol RAS-A IOP

Exploration Protocol
The Exploration Protocol is applicable to vehicles that have the capability to
perform autonomous exploration tasks in indoor and outdoor environments, ei-
ther in mapped or unmapped areas. While the decision making process that
takes the vehicles to specific areas to explore can be conditioned or config-
ured by user input, as of now, this microservice controls where the exploration
starts and stops, and provides status over the exploration behavior and al-
lows to setup different control points, like ingress and egress portals or return
point post-exploration. A vehicle executing an exploration should be set to
Exploration flight mode.
When the system (vehicle plus GCS) have computer vision and image process-
ing capabilities that allow POI detection and tracking, and when using the POI_
REPORT message, the POI_REPORT uid field can be used to identify the ingress
or egress portals. Note though that while the POI_REPORT uid field is a 64-bit
integer, the portal IDs are limited to a 32-bit field. It is though advised to just
use the range 0x00000000 to 0xFFFFFFFF to identify any portal on the POI_
REPORT message, and so that ID can also be used as the same identifier for
the portal in the commands and messages used in this microservice.

Exploration task definition and configuration

An exploration task is identified by a task ID. A new task always gets assigned a
new task ID. When stopping and resuming a task, multiple tasks can be queued,
and MAV_CMD_DO_EXPLORATION allows to define if one wants to start a new
task, resume the current task, or resume a queued task
The possible configurations for a task are the time limit, in seconds, for execut-
ing a task, the ingress and egress (when applicable) portals and the exploration
boundaries. The boundaries can be set using MAV_CMD_SET_EXPLORATION_
BOUNDARIES and are defined by a cardinal-direction-aligned rectangular solid
(cuboid) defined by 3 points: p1, p2 and p3. In order to set the exploration
task world boundaries. p1 and p2 identify the vertices of a rectangle, which
define a 2D localization of the exploration area, parallel to the ground plane,
while p3, matching the same coordinates of p1, provides the height limitation
of the 3D volume to explore. In short, the values to be set are x1, y1, x2,
y2, z and the height (h) of the cuboid / 3D volume, where the point coordi-
nates can be represented by p1(x1, y1, z+h), p2(x2, y2, z+h) and p3(x1, y1, z).

Message/Enum Summary

176

Exploration Protocol RAS-A IOP

Message Description
EXPLORATION_STATUS Provides status over an exploration

task. The message should, by default,
be streamed at 1Hz.

EXPLORATION_INFO Provides configuration information
about an exploration task.

EXPLORATION_RETURN_POSITION Provides the return-from-exploration
position when an exploration is
completed or canceled.

Enumeration Description
MAV_EXPLORATION_STATUS Flag bitmap to provide status of the

exploration task metrics.

Commands Summary

Command Description
MAV_CMD_GO_THROUGH_PORTAL Go through a portal. In an indoor

exploration context, a portal
represents an structural identifiable
entry or pass point to start, stop or
continue an exploration.

MAV_CMD_DO_EXPLORATION Start or continue the exploration task.
MAV_CMD_STOP_EXPLORATION Stop the current exploration task.

The behavior after stopping is defined
by a parameter.

MAV_CMD_SET_EXPLORATION_
RETURN_POS

Sets the return position after stopping
or finishing an exploration task. Used
when the vehicle autonomy engine
does not set this position or used to
overwrite it.

MAV_CMD_DO_EXPLORATION_
RETURN

Return to defined position after
exploration.

MAV_CMD_SET_INGRESS_PORTAL Sets a specific portal to be an ingress
portal.

MAV_CMD_SET_EGRESS_PORTAL Sets a specific portal to be an egress
portal.

MAV_CMD_SET_EXPLORATION_
BOUNDARIES

Set exploration task world
boundaries.

177

Exploration Protocol RAS-A IOP

Message definitions

EXPLORATION_STATUS Provides status over an exploration task. The mes-
sage should, by default, be streamed at 1Hz.

Field name Type Units Values Description
time_usec uint64_t us - Timestamp (UNIX Epoch

time or time since system
boot). The receiving end
can infer timestamp format
(since 1.1.1970 or since
system boot) by checking
for the magnitude of the
number.

time_to_
timeout

uint64_t us - Remaining time for the
vehicle to execute the
exploration task, after
which another predefined
behavior is triggered.
UINT64_MAX when
unknown or not applicable.

exploration_id uint8_t - - ID of the exploration task.
255 if not applicable or
unknown.

progress uint16_t - - Progress measurement of
the exploration task.
Specific meaning may vary
by implementation, but in
general, increasing values
mean more has been
explored. UINT16_MAX
when unknown or not
applicable.

178

Exploration Protocol RAS-A IOP

Field name Type Units Values Description
denominator uint16_t - - Measurement of the known

size of the exploration task.
Specific meaning may vary,
but when progress ==
denominator, this should
imply that exploration is
complete. This value may
increase as more need to
explore is discovered, or
may be fixed (100
recommended) if the end
state is known (e.g.,
exploration in a known
mapped environment). 0
when no meaningful size
can be communicated.

flags uint8_t - MAV_
EXPLO-
RATION_
STATUS_
FLAGS

Bitmap of the exploration
task status flags.

level int8_t - - In an indoor exploration
task, it indicates the
floor/level of the structure
that is currently being
explored. The level where
the vehicle started the
exploration is considered
the level 0. INT8_MAX
when unknown, not
capable to provide or not
applicable.

EXPLORATION_INFO Provides configuration information about an explo-
ration task. The message can be requested using the MAV_CMD_REQUEST_
MESSAGE command, where param 3 should be used to set which exploration
task to get. To determine all coordinates of the cuboid, consider: p1_x equals
p3_x, p1_y equals p3_y, p1_z equals p2_z, p1_lat equals p3_lat, p1_lon equals
p3_lon and p1_alt equals p2_alt.

179

https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_MESSAGE
https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_MESSAGE

Exploration Protocol RAS-A IOP

Field name Type Units Values Description
exploration_id uint8_t - - ID of the exploration task.

255 to get the information
of the current running
exploration task.

time_limit uint32_t s - Time limit to execute the
exploration. Reaching this
time triggers the behavior
defined in the behaviour_
after_stopping field. Set to
0 when the exploration
time is not limited.

behaviour_
after_stopping

uint8_t - - The behavior after
stopping the exploration
task. 0: Hold, 1: Land, 2:
Return (to exploration
return position).

boundaries_
p1_lat

int32_t degE7 - Exploration cuboid
boundaries point 1 Latitude
(WGS84). INT32_MAX if
unknown. p1_lat == p3_
lat.

boundaries_
p1_lon

int32_t degE7 - Exploration cuboid
boundaries point 1
Longitude (WGS84).
INT32_MAX if unknown.
p1_lon == p3_lon.

boundaries_
p1_alt

float m - Exploration cuboid
boundaries point 1 Altitude
(MSL). NaN if unknown. p1_
alt == p2_alt.

boundaries_
p1_x

float m - Exploration cuboid
boundaries point 1 local
NED X coordinate. NaN if
unknown. p1_x == p3_x.

boundaries_
p1_y

float m - Exploration cuboid
boundaries point 1 local
NED Y coordinate. NaN if
unknown. p1_y == p3_y.

boundaries_
p1_z

float m - Exploration cuboid
boundaries point 1 local
NED Z coordinate. NaN if
unknown. p1_z == p2_z.

180

Exploration Protocol RAS-A IOP

Field name Type Units Values Description
boundaries_
p2_lat

int32_t degE7 - Exploration cuboid
boundaries point 2 Latitude
(WGS84). INT32_MAX if
unknown.

boundaries_
p2_lon

int32_t degE7 - Exploration cuboid
boundaries point 2
Longitude (WGS84).
INT32_MAX if unknown.

boundaries_
p2_x

float m - Exploration cuboid
boundaries point 2 local
NED X coordinate. NaN if
unknown.

boundaries_
p2_y

float m - Exploration cuboid
boundaries point 2 local
NED Y coordinate. NaN if
unknown.

boundaries_
p3_alt

float m - Exploration cuboid
boundaries point 3 Altitude
(MSL). NaN if unknown.

boundaries_
p3_z

float m - Exploration cuboid
boundaries point 3 local
NED Z coordinate. NaN if
unknown.

ingress_portal_
id

uint32_t - - Currently defined ingress
portal ID. This portal ID can
either be set by the system
autonomy engine or by an
offboard controller or
operator using MAV_CMD_
SET_INGRESS_PORTAL.
When unknown, not
applicable or not
deterministic, set to
UINT32_MAX.

ingress_portal_
lat

int32_t degE7 - Currently defined ingress
portal Latitude (WGS84).
INT32_MAX if unknown, not
applicable or when ingress_
portal_id is set and
different from UINT32_
MAX.

181

Exploration Protocol RAS-A IOP

Field name Type Units Values Description
ingress_portal_
lon

int32_t degE7 - Currently defined ingress
portal Longitude (WGS84).
INT32_MAX if unknown, not
applicable or when ingress_
portal_id is set and
different from UINT32_
MAX.

ingress_portal_
alt

float m - Currently defined ingress
portal Altitude (MSL). NaN
if unknown, not applicable
or when ingress_portal_id
is set and different from
UINT32_MAX.

egress_portal_
id

uint32_t - - Currently defined egress
portal ID. This portal ID can
either be set by the system
autonomy engine or by an
offboard controller or
operator using MAV_CMD_
SET_EGRESS_PORTAL.
When unknown, not
applicable or not
deterministic, set to
UINT32_MAX.

egress_portal_
lat

int32_t degE7 - Currently defined egress
portal Latitude (WGS84).
INT32_MAX if unknown, not
applicable or when egress_
portal_id is set and
different from UINT32_
MAX.

egress_portal_
lon

int32_t degE7 - Currently defined egress
portal Longitude (WGS84).
INT32_MAX if unknown, not
applicable or when egress_
portal_id is set and
different from UINT32_
MAX.

182

Exploration Protocol RAS-A IOP

Field name Type Units Values Description
egress_portal_
alt

float m - Currently defined egress
portal Altitude (MSL). NaN
if unknown, not applicable
or when egress_portal_id is
set and different from
UINT32_MAX.

EXPLORATION_RETURN_POSITION Provides the return-from-exploration
position when an exploration is completed (e.g. volume set by the exploration
boundaries does not have new open areas for the vehicle to explore) or
canceled (e.g. the operator stops the exploration task and requests the vehicle
to leave the defined exploration area). Can either be set by the vehicle’s
onboard autonomy engine or set by the user MAV_CMD_SET_EXPLORATION_
RETURN_POS. A MAV_CMD_DO_EXPLORATION_RETURN can be used to send
the vehicle to the position defined by this message. This message can be
requested by sending the MAV_CMD_REQUEST_MESSAGE command.

Field name Type Units Values Description
time_usec uint64_t us - Timestamp (UNIX Epoch

time or time since system
boot). The receiving end
can infer timestamp format
(since 1.1.1970 or since
system boot) by checking
for the magnitude of the
number.

latitude int32_t degE7 Latitude (WGS84). INT32_
MAX when unknown.

longitude int32_t degE7 Longitude (WGS84).
INT32_MAX when unknown.

altitude int32_t mm - Altitude (MSL). Positive for
up. Note that virtually all
GPS modules provide both
WGS84 and MSL. INT32_
MAX when unknown.

relative_alt int32_t mm - Altitude above ground.
INT32_MAX when unknown.

geoid_alt int32_t mm - Altitude relative to WGS84
geoid. INT32_MAX when
unknown.

183

https://mavlink.io/en/messages/common.html#MAV_CMD_REQUEST_MESSAGE

Exploration Protocol RAS-A IOP

Field name Type Units Values Description
x float m Local X position of this

position in the local
coordinate NED frame.
NaN when unknown.

y float m Local Y position of this
position in the local
coordinate NED frame.
NaN when unknown.

z float m Local Z position of this
position in the local
coordinate NED frame.
NaN when unknown.

yaw float - World to surface heading
transformation of the
return-from-exploration
position. Used to indicate
the heading with respect to
the ground. NaN when
unknown.

Command definitions

MAV_CMD_GO_THROUGH_PORTAL Go through a portal. In an indoor explo-
ration context, a portal represents an structural identifiable entry or pass point
to start, stop or continue an exploration. COMMAND_INT should be used so
to set the MAV_FRAME and consequently, frame and coordinates of the portal
position (MAV_FRAME_GLOBAL means global coordinates are being used, while
MAV_FRAME_LOCAL_NED means local NED coordinates are being used).

Param (:Label) Description Values Units
1: Portal ID ID of the portal. If the ID is

unknown or not deterministic,
set it to UINT32_MAX and use
params 5, 6 and 7 to define
the local or global position of
the portal.

min: 0
max:
4294967295
increment:
1

2 Reserved
3 Reserved
4 Reserved

184

https://mavlink.io/en/messages/common.html#COMMAND_INT
https://mavlink.io/en/messages/common.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#MAV_FRAME_GLOBAL
https://mavlink.io/en/messages/common.html#MAV_FRAME_LOCAL_NED

Exploration Protocol RAS-A IOP

Param (:Label) Description Values Units
5: Position X or
Latitude

X or Latitude (WGS84)
coordinate of the portal
position. NaN or INT32_MAX if
unknown (or if using param 1
to set the portal).

degE7 or
mE4

6: Position Y or
Longitude

Y or Longitude (WGS84)
coordinate of the portal
position. NaN or INT32_MAX if
unknown (or if using param 1
to set the portal).

degE7 or
mE4

7: Position Z or
Altitude (MSL)

Z or Altitude (MSL) coordinate
of the portal position. NaN
when unknown or when using
param 1 to set the portal.

m

MAV_CMD_DO_EXPLORATION Start or continue the exploration task. If
starting a new exploration, but requiring to get through a portal first, params
4 or 5 to 7 should be set and different from the specified ignore values.
Continuing an exploration can be done without necessarily setting the ingress
portal, unless the exploration requires the definition of more than the initial
ingress portal. If the passed exploration ID does not exist or is not listed as
a valid exploration ID in the vehicle autonomy engine, then this command
should be rejected. COMMAND_INT should be used so to set the MAV_FRAME
and consequently, frame and coordinates of the portal position (MAV_FRAME_
GLOBAL means global coordinates are being used, while MAV_FRAME_LOCAL_
NED means local NED coordinates are being used).

Param (:Label) Description Values Units
1: Exploration task
ID

Sets the ID of the exploration
task to start. If the ID already
exists, it resumes that
(queued/listed) exploration
task. Set to UINT8_MAX if one
wants to resume the last
exploration task.

min: 0
max: 255
increment:
1

2: Time limit Time limit to execute the
exploration. Reaching this
time triggers the behavior
defined in param 4. Set to 0
when there is no time limit.

min: 0 s

185

https://mavlink.io/en/messages/common.html#COMMAND_INT
https://mavlink.io/en/messages/common.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#MAV_FRAME_GLOBAL
https://mavlink.io/en/messages/common.html#MAV_FRAME_GLOBAL
https://mavlink.io/en/messages/common.html#MAV_FRAME_LOCAL_NED
https://mavlink.io/en/messages/common.html#MAV_FRAME_LOCAL_NED

Exploration Protocol RAS-A IOP

Param (:Label) Description Values Units
3: Behavior after
stopping

The behavior after stopping
the exploration task. 0: Hold,
1: Land, 2: Return to position.

min: 0
max: 2
increment:
1

4: Ingress Portal ID ID of the ingress portal. If the
ID is unknown, not
deterministic, or when already
in the area to explore after
going through a portal, set it
to UINT32_MAX and use
params 5, 6 and 7 to define
the local or global position of
the portal. Note that an
egress portal is not defined by
this command but can be
consequently set either by
the vehicle autonomy engine
or by an operator/external
controller using MAV_CMD_
SET_EGRESS_PORTAL.

min: 0
max:
4294967295
increment:
1

5: Position X or
Latitude

X or Latitude (WGS84)
coordinate of the portal
position. NaN or INT32_MAX if
unknown (or if using param 4
to set the portal).

degE7 or
mE4

6: Position Y or
Longitude

Y or Longitude (WGS84)
coordinate of the portal
position. NaN or INT32_MAX if
unknown (or if using param 4
to set the portal).

degE7 or
mE4

7: Position Z or
Altitude (MSL)

Z or Altitude (MSL) coordinate
of the portal position. NaN
when unknown or when using
param 4 to set the portal ID.

m

MAV_CMD_STOP_EXPLORATION Stop an exploration task. The behavior af-
ter stopping is defined by a parameter. Return to position should take the
vehicle to the defined exit portal first, and then to the return post-exploration
point (accessible through MAV_CMD_SET_EXPLORATION_RETURN_POS . If the
passed exploration ID does not exist or is not listed as a valid exploration ID in
the vehicle autonomy engine, then this command should be rejected.

186

Exploration Protocol RAS-A IOP

Param (:Label) Description Values Units
1: Exploration task
ID

Sets the ID of the (current or
queued) exploration task to
stop. Set to UINT32_MAX if
one wants to stop the current
exploration task.

min: 0
max:
UINT32_
MAX
increment:
1

2: Behavior after
stopping

The behavior after stopping
the exploration task. 0: Hold,
1: Land, 2: Return to position.

min: 0
max: 2
increment:
1

3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Reserved

MAV_CMD_SET_EXPLORATION_RETURN_POS Sets the return position af-
ter stopping or finishing an exploration task. Used when the vehicle autonomy
engine does not set this position or to overwrite it. COMMAND_INT should be
used so to set the MAV_FRAME and consequently, frame and coordinates of the
position (MAV_FRAME_GLOBAL means global coordinates are being used, while
MAV_FRAME_LOCAL_NED means local NED coordinates are being used).

Param (:Label) Description Values Units
1 Reserved
2 Reserved
3 Reserved
4: Yaw or Heading Yaw or heading of the return

position.
rad

5: Position X or
Latitude

X or Latitude (WGS84)
coordinate of the return
position.

degE7 or
mE4

6: Position Y or
Longitude

Y or Longitude (WGS84)
coordinate of the return
position.

degE7 or
mE4

7: Position Z or
Altitude (MSL)

Z or Altitude (MSL) coordinate
of the return position.

m

MAV_CMD_DO_EXPLORATION_RETURN Return to a system-defined posi-
tion after exploration.

187

https://mavlink.io/en/messages/common.html#COMMAND_INT
https://mavlink.io/en/messages/common.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#MAV_FRAME_GLOBAL
https://mavlink.io/en/messages/common.html#MAV_FRAME_LOCAL_NED

Exploration Protocol RAS-A IOP

Param (:Label) Description Values Units
1 Reserved
2 Reserved
3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Reserved

MAV_CMD_SET_INGRESS_PORTAL Sets a specific portal to be an entry
portal. Defines also the approach vector for a vehicle to approach and go
through the portal. COMMAND_INT should be used so to set the MAV_FRAME
and consequently, frame and coordinates of the approach vector (MAV_
FRAME_GLOBAL means global coordinates are being used, while MAV_FRAME_
LOCAL_NED means local NED coordinates are being used).

Param (:Label) Description Values Units
1: Portal ID ID of the portal to be set as an

ingress point.
min: 0
max:
4294967295
increment:
1

2: Approach
vector initial point
X or Latitude

X (mE4) or Latitude (degE7)
(WGS84) coordinate of the
initial point of the approach
vector to the portal. NaN or
INT32_MAX if unknown.

degE7 or
mE4

3: Approach
vector initial point
Y or Longitude

Y (mE4) or Longitude (degE7)
(WGS84) coordinate of the
initial point of the approach
vector to the portal. NaN or
INT32_MAX if unknown.

degE7 or
mE4

4: Approach
vector initial point
Z or Altitude (MSL)

Z or Altitude (MSL) coordinate
of the initial point of the
approach vector to the portal.
NaN if unknown.

m

5: Approach
vector final point X
or Latitude

X (mE4) or Latitude (degE7)
(WGS84) coordinate of the
final point of the approach
vector to the portal. NaN or
INT32_MAX if unknown.

degE7 or
mE4

188

https://mavlink.io/en/messages/common.html#COMMAND_INT
https://mavlink.io/en/messages/common.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#MAV_FRAME_GLOBAL
https://mavlink.io/en/messages/common.html#MAV_FRAME_GLOBAL
https://mavlink.io/en/messages/common.html#MAV_FRAME_LOCAL_NED
https://mavlink.io/en/messages/common.html#MAV_FRAME_LOCAL_NED

Exploration Protocol RAS-A IOP

Param (:Label) Description Values Units
6: Approach
vector final point Y
or Longitude

Y (mE4) or Longitude (degE7)
(WGS84) coordinate of the
final point of the approach
vector to the portal. NaN or
INT32_MAX if unknown.

degE7 or
mE4

7: Approach
vector final point Z
or Altitude (MSL)

Z or Altitude (MSL) coordinate
of the final point of the
approach vector to the portal.
NaN if unknown.

m

MAV_CMD_SET_EGRESS_PORTAL Sets a specific portal to be an exit portal.
Defines also the approach vector for a vehicle to approach and go through
the portal. COMMAND_INT should be used so to set the MAV_FRAME and
consequently, frame and coordinates of the approach vector (MAV_FRAME_
GLOBAL means global coordinates are being used, while MAV_FRAME_LOCAL_
NED means local NED coordinates are being used).

Param (:Label) Description Values Units
1: Portal ID ID of the portal to be set as an

egress point.
min: 0
max:
4294967295
increment:
1

2: Approach
vector initial point
X or Latitude

X (mE4) or Latitude (degE7)
(WGS84) coordinate of the
initial point of the approach
vector to the portal. NaN if
unknown. NaN or INT32_MAX
if unknown.

degE7 or
mE4

3: Approach
vector initial point
Y or Longitude

Y (mE4) or Longitude (degE7)
(WGS84) coordinate of the
initial point of the approach
vector to the portal. NaN if
unknown. NaN or INT32_MAX
if unknown.

degE7 or
mE4

4: Approach
vector initial point
Z or Altitude (MSL)

Z or Altitude (MSL) coordinate
of the initial point of the
approach vector to the portal.
NaN if unknown. NaN if
unknown.

m

189

https://mavlink.io/en/messages/common.html#COMMAND_INT
https://mavlink.io/en/messages/common.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#MAV_FRAME_GLOBAL
https://mavlink.io/en/messages/common.html#MAV_FRAME_GLOBAL
https://mavlink.io/en/messages/common.html#MAV_FRAME_LOCAL_NED
https://mavlink.io/en/messages/common.html#MAV_FRAME_LOCAL_NED

Exploration Protocol RAS-A IOP

Param (:Label) Description Values Units
5: Approach
vector final point X
or Latitude

X (mE4) or Latitude (degE7)
coordinate of the final point of
the approach vector to the
portal. NaN or INT32_MAX if
unknown.

degE7 or
mE4

6: Approach
vector final point Y
or Longitude

Y (mE4) or Longitude (degE7)
(WGS84) coordinate of the
final point of the approach
vector to the portal. NaN or
INT32_MAX if unknown.

degE7 or
mE4

7: Approach
vector final point Z
or Altitude (MSL)

Z or Altitude (MSL) coordinate
of the final point of the
approach vector to the portal.
NaN if unknown.

m

MAV_CMD_SET_EXPLORATION_BOUNDARIES Set exploration task world
boundaries. When starting a new behavior, either the system has default
boundaries or it’s boundless. This message will be accepted when the task
ID already exists, or otherwise should fail. In order to set the exploration
task world boundaries, p1 and p2 identify the vertices of a rectangle, which
define a 2D localization of the exploration area, while p3, matching the same
coordinates of p1, provides the height limitation of the 3D volume to explore.
In short, the coordinates are x1, y1, x2, y2, z and the height of the cuboid / 3D
volume, where the point coordinates can be represented by p1(x1, y1, z+h),
p2(x2, y2, z+h) and p3(x1, y1, z). COMMAND_INT should be used so to set
the MAV_FRAME and consequently, frame and coordinates of the boundaries
cuboid (MAV_FRAME_GLOBAL means global coordinates are being used, while
MAV_FRAME_LOCAL_NED means local NED coordinates are being used).

Param (:Label) Description Values Units
1: Exploration task
ID

ID of the exploration task to
set these boundaries to. Set
to UINT8_MAX if not
applicable or/and to set these
boundaries to the current
running or active exploration
task.

min: 0
max: 255
increment:
1

190

https://mavlink.io/en/messages/common.html#COMMAND_INT
https://mavlink.io/en/messages/common.html#MAV_FRAME
https://mavlink.io/en/messages/common.html#MAV_FRAME_GLOBAL
https://mavlink.io/en/messages/common.html#MAV_FRAME_LOCAL_NED

RAS-A IOP

Param (:Label) Description Values Units
2: Cuboid height Exploration 3D space

boundaries cuboid height.
The Z local coordinate or
altitude (MSL) of point 1 and 2
are computed by the sum of
this height with the local Z or
altitude (MSL) of point 3, i.e
Z1 = Z2 = Z3 + cuboid height.
NaN if not applicable.

m

3: X1 or Latitude 1 Local X (mE4) or Latitude
(degE7) (WGS84) of point 1 of
the exploration 3D space
boundaries cuboid. NaN or
INT32_MAX if not applicable.

degE7 or
mE4

4: Y1 or Longitude
1

Local Y (mE4) or Longitude
(degE7) (WGS84) of point 1 of
the exploration 3D space
boundaries cuboid. NaN or
INT32_MAX if not applicable.

degE7 or
mE4

5: X2 or Latitude 2 Local X (mE4) or Latitude
(degE7) (WGS84) of point 2 of
the exploration 3D space
boundaries cuboid. NaN or
INT32_MAX if not applicable.

degE7 or
mE4

6: Y2 or Longitude
2

Local Y (mE4) or Longitude
(degE7) (WGS84) of point 2 of
the exploration 3D space
boundaries cuboid. NaN or
INT32_MAX if not applicable.

degE7 or
mE4

7: Z3 or Altitude 3 Local Z or Altitude (MSL) point
3 of the exploration 3D space
boundaries cuboid. This also
represents the height of the
bottom plane of the cuboid.
NaN if not applicable.

m

Vehicle dynamics, states and configuration
This section covers other details that are not specific to the definition of the
MAVLink protocol but that require standardization under this IOP.

191

System modes RAS-A IOP

System modes
The systemmodes, under the MAVLink spec, are a combination of a base mode
and custom mode. Under this IOP, and following the approach taken in the PX4
Autopilot, a mode is identified using a <MAIN_MODE> or <MAIN_MODE>:<SUBMODE> for-
mats. Although MAV_CMD_DO_SET_MODE allows to set the mode the vehicle should
go into, other commands will force the vehicle into going into a specific mode
(e.g. MAV_CMD_NAV_TAKEOFF should take the vehicle into an AUTO:TAKEOFF mode).
The minimal modes to be supported are:

MAIN_
MODE:SUBMODE

PX4 main_
mode value

PX4
custom_mode
value Description

INIT 10 Initial state of the vehicle
before it takes-off. Vehicle
should get back to this
state after landing.

MANUAL 1 Manual control of the
vehicle attitude.

ALTCTL 2 Assisted manual control of
the vehicle altitude.

POSCTL:POSCTL 3 0 Assisted manual control of
the vehicle position. Holds
position with no input from
the operator, but expects
the operator to provide
input.

POSCTL:ORBIT 3 1 Assisted manual control of
the vehicle position while
orbiting. Holds an orbit with
no input from the operator,
but expects the operator to
provide input.

AUTO:LOITER 4 3 Autonomously holding
position, without
intervention of the
operator.

AUTO:TAKEOFF 4 2 Executing an autonomous
takeoff.

AUTO:LAND 4 6 Executing an autonomous
landing.

AUTO:PREC_LAND 4 9 Executing an autonomous
precision landing.

192

System modes RAS-A IOP

MAIN_
MODE:SUBMODE

PX4 main_
mode value

PX4
custom_mode
value Description

AUTO:MISSION 4 4 Executing an autonomous
mission.

AUTO:RTL 4 5 Autonomously returning to
the launch point.

AUTO:FOLLOW_
TARGET

4 8 Autonomously tracking and
following a target.

AUTO:GO_
THROUGH

4 10 Autonomously going
through a spacial entity in
the environment (portal,
door, etc.).

AUTO:EXPLORATION 4 11 Executing an autonomous
exploration task.

The following diagram provides the possible mode transitions.

Figure 43: System Modes State Machine

193

Arming procedure RAS-A IOP

MAV_CMD_DO_SET_MODE can switch the system to any mode (considering the
conditions are met), but some other commands enforce switching to specific
modes:

• MAV_CMD_NAV_LAND switches the system mode to AUTO:LAND or
AUTO:PREC_LAND (depending on param2)

• MAV_CMD_NAV_TAKEOFF switches the system mode to AUTO:TAKEOFF
• MAV_CMD_DO_FOLLOW and MAV_CMD_DO_FOLLOW_REPOSITION switch
the system mode to AUTO:FOLLOW_TARGET

• MAV_CMD_DO_ORBIT switches the system mode to POSCTL:ORBIT
• MAV_CMD_MISSION_START switches the systemmode toAUTO:MISSION
• MAV_CMD_DO_FLIGHTTERMINATION switches the system mode to INIT

Arming procedure
This IOP considers that an arming procedure does note necessarily means a
quick state transition but rather a process that can take several seconds. The
reason for that is that the required mechanism that need to be enabled for a
vehicle to be considered “armed” and ready-to-fly might vary from vehicle to
vehicle. For that same reason, it is considered that the MAV_CMD_COMPONEN
T_ARM_DISARM can be processed as a long running command, depending on
the first ACK that is sent from the vehicle side as a response to this command
being sent from the GCS. This means that the progress of the arming procedure
can also be captured through these same ACKs.

Autonomy Engine
Vehicles that supports advanced features via an “autonomy engine” may per-
form more as part of the arming sequence. A vehicle should advertise this
requirement by broadcasting an additional HEARTBEAT for this component with
component ID MAV_COMP_ID_AUTONOMY_ENGINE. The starting and control of this com-
ponent is done through the MAV_CMD_COMPONENT_CONTROL command, which allows
control of system components with MAVLink interfaces much like the UNIX
systemctl.
A GCS will be required to send a MAV_CMD_COMPONENT_CONTROL command
directed to the vehicle’s MAV_COMP_ID_AUTONOMY_ENGINE (setting param1
of the command to MAV_COMP_ID_AUTONOMY_ENGINE) requesting the com-
ponent to be started - this is achieved by setting param2 of the command to
take the value of COMPONENT_CONTROL_START. The GCS should only send
this command if it receives HEARBEAT messages from the MAV_COMP_ID_AUTONOMY_
ENGINE component, meaning that the component is present.
The autonomy engine component should use the system_status field of the
HEARTBEATmessage to communicate whether it has started or not. A GCS should

194

MAV_CMD_DO_SET_MODE
MAV_CMD_NAV_LAND
MAV_CMD_NAV_TAKEOFF
MAV_CMD_DO_FOLLOW
MAV_CMD_DO_FOLLOW_REPOSITION
MAV_CMD_DO_ORBIT
MAV_CMD_MISSION_START
MAV_CMD_DO_FLIGHTTERMINATION
MAV_CMD_COMPONENT_ARM_DISARM
MAV_CMD_COMPONENT_ARM_DISARM
MAV_CMD_COMPONENT_CONTROL
MAV_COMP_ID_AUTONOMY_ENGINE
MAV_COMP_ID_AUTONOMY_ENGINE
COMPONENT_CONTROL_START

RAS-A IOP

Figure 44: Arming Procedure

195

RAS-A IOP

interpret the system_status as follows: - MAV_STATE_UNINIT, indicates it is waiting
for receipt of the COMPONENT_CONTROL_START. - MAV_STATE_ACTIVE, indicates
the autonomy engine is activated and ready.
On receipt of a MAV_CMD_COMPONENT_ARM_DISARM, if not already received externally
the vehicle should generate and send the MAV_CMD_COMPONENT_CONTROL to start the
autonomy engine. This moves the complexity of the workflow to the vehicle
side, but guarantees that the GCS doesn’t have to send yet an extra command.
STATUSTEXT messages can be send from the vehicle to the GCS to provide
status on the start of the autonomy engine component. Further iteration of
this IOP will consider a mechanism to send this status in a more convinient and
adequate way, potentially through the MAVLink Events Interface Protocol.

196

COMPONENT_CONTROL_START
STATUSTEXT

	Scope
	Purpose
	Document Overview
	Source Documents
	Government Documents
	Non Government Documents

	Joint Reference Architecture
	Introduction to MAVLink
	Key Features
	Determining Protocol/Message Version
	Version Handshaking
	Capabilities
	Versions and Signing

	Networking
	Routing
	Connections
	Identification

	Packet Serialization
	Packet Format
	Incompatibility Flags (MAVLink 2)
	Compatibility Flags (MAVLink 2)
	Payload Format
	Field Reordering
	Empty-Byte Payload Truncation (MAVLink 2)
	CRC_EXTRA Calculation

	Checksum

	Signing / Authentication
	Frame Format
	Link IDs
	Signature

	Timestamp Handling
	Accepting Signed Packets
	Accepting Unsigned Packets
	Accepting Incorrectly Signed Packets
	Secret Key Management
	Logging

	Packaging and Streaming Video and Metadata
	Overview
	Metadata
	Security

	Microservices
	Datalink Pairing Protocol
	Introduction
	In-Band Pairing Flow
	Out-of-Band Pairing Flow
	Message/Enum Summary
	HEARTBEAT Broadcast Frequency
	Connecting to a GCS or MAVLink API
	Component Identity

	Generic Payload Attribute Protocol
	Attribute Parameter Schema
	Example Generic Payload: Gimbal with Camera
	Example Generic Payload: Parachute

	Telemetry
	General requirements and recommendations

	Manual Control Protocol
	Mapping Axes
	Mapping Buttons
	Alternatives
	Implementations
	Future Extensions

	Mission Protocol
	Mission Types
	Mission Items (MAVLink Commands)
	Message/Enum Summary
	Deprecated Types: MISSION_ITEM
	Frames & Positional Information
	Param 5, 6 For Non-Positional Data
	Operations
	Mission File Formats
	Mission Command Detail
	Plan File Format

	Parameter Protocol
	Message/Enum Summary
	Parameter Encoding
	Parameter Caching
	Multi-System and Multi-Component Support
	Limitations
	Parameter Operations
	List of parameters

	Extended Parameter Protocol
	Message/Enum Summary
	Parameter Encoding
	C Encoding/Decoding
	Parameter Caching
	Limitations
	Parameter Operations

	Command Protocol
	Message/Enum Summary
	Sequences
	Long Running Commands
	Commands to support

	Camera Protocol
	Camera Connection
	Basic Camera Operations
	Message/Enum Summary

	Gimbal Protocol v2
	Introduction
	Concepts
	Implementation and Messages
	Message/Command/Enum Summary
	Sequences
	How to Implement the Gimbal Device Interface

	Terrain Protocol
	Autopilot Terrain Map Request
	GCS Terrain Tile Check

	Exploration Protocol
	Exploration task definition and configuration
	Command definitions

	Vehicle dynamics, states and configuration
	System modes
	Arming procedure

	Autonomy Engine

		2023-06-02T12:51:46-0400
	BOROWSKI.MATTHEW.FRANCIS.1266351166

