

# Designing for DFR Program Value

## Katrina Armistead

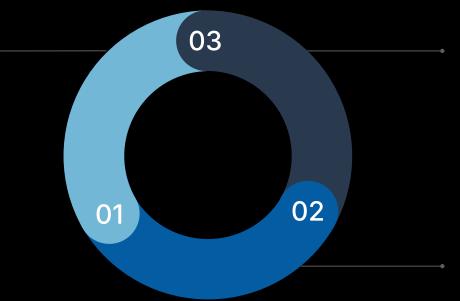




#### **Session Objectives**

#### **Designing for DFR Program Value**

- 1. Understand the importance of tracking ROI for your program
- 2. Identify relevant use cases & where to start
- 3. Adapt an example framework for your agency goals






# Why is understanding program value important?

#### Drone programs are expensive.

Hardware + Software
Infrastructure and Installation
Integration Work
Training
Staffing
Real-time Information Center /
Remote Operations Center
Sustainment Cost



#### Evaluate results over time

Are you meeting the goals you set?

## Communicate the benefits to critical stakeholders

How does the business case incorporate bigger organizational goals?



## What is your agency hoping to achieve?



## Save lives & increase safety

Real-time situational information without sending officers blindly into danger



#### Improve response times

Arrive on scene in less than 2 minutes



#### Save money

Recover dispatch labor with greater call efficiency, minimize claims, avoid medical leave



#### Reduce use of force incidents

More information, faster allows for the time & distance needed to make better tactical decisions



### Improve community relationships

Capture crime in progress, locating subjects and vehicles, resulting in higher solve rates



#### Address mental health and wellness

Loss of life is devastating, priceless, and irreplaceable









#### Identify discrete use cases

Where are you on the path to adoption?

What improvements are critically important to your agency?





**Crash Scene Reconstruction** 

**Crime Scene/Fire Investigation Reconstruction** 

Search and Rescue

SWAT (barricaded subjects, high risk warrants)

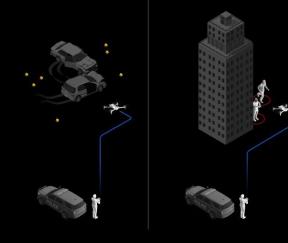
Overwatch at Fire and Hazmat Incidents

**Incident Pre-Planning** 



Crew/Dock-Based Drone as First Responder

Specialized Units


Patrol-Led Deployment

Patrol-Led Drone as First Responder

Dock-Based Drone as First Responder (Autonomous)

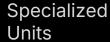
@ 2025 Skydio, Inc. Proprietary & Confidential





**Crash Scene Reconstruction** 

Crime Scene/Fire Investigation Reconstruction


Search and Rescue

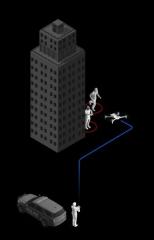
SWAT (barricaded subjects, high risk warrants)

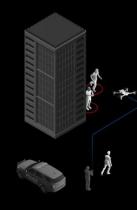
Overwatch at Fire and Hazmat Incidents

**Incident Pre-Planning** 

**Patrol Overwatch** 




Patrol-Led Deployment


Patrol-Led
Drone as First
Responder

Crew/Dock-Based Drone as First Responder (Piloted) Dock-Based Drone as First Responder (Autonomous)











Specialized Units

Patrol-Led Deployment

Patrol-Led Drone as First Responder **Crash Scene Reconstruction** 

Crime Scene/Fire Investigation Reconstruction

Search and Rescue

SWAT (barricaded subjects, high risk warrants)

Overwatch at Fire and Hazmat Incidents

**Incident Pre-Planning** 

Patrol Overwatch
Based Drone as
First Responder

Dock-Based Drone as First Responder (Autonomous)

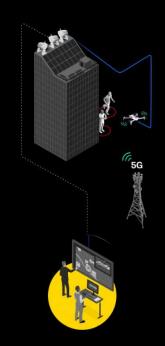


**Crash Scene Reconstruction** 

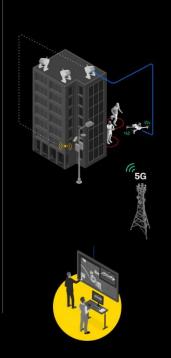
**Crime Scene/Fire Investigation Reconstruction** 

Search and Rescue

SWAT (barricaded subjects, high risk warrants)


Overwatch at Fire and Hazmat Incidents

**Incident Pre-Planning** 


Patrol Overwatch

**Call for Service Response** 

Specialized Units Patrol-Led Auto Theft Prevention
Deployment Drone as First
Responder



Crew/Dock-Based Drone as First Responder (Piloted)



Dock-Based Drone as First Responder (Autonomous)





Identify discrete use cases

Understand the current process

How long does it take?

How many people are involved?

What equipment is used?





Identify discrete use cases

Understand the current process

Measure the difference

How do the processes change when drones are added to the workflow?

For dock-based DFR, use data-driven deployment



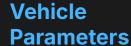
## How many, where?



## Skydio's DFR Deployment Simulation takes the guesswork out of Dock deployment based on real agency data

#### **Calls for Service**

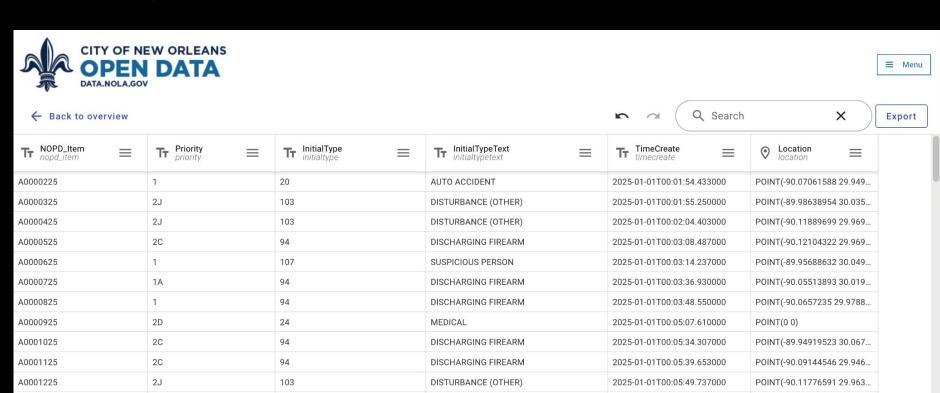
- What are the important call priority classifications for drone response?
- Is there a contingency for simultaneous calls?
- What is the average call duration?




#### Airspace

- How large is the coverage area?
- Where are the FAA's no fly zones?
- Are there waivers in place to enable BVLOS flight?




DFR
Deployment
Modeling
Engine



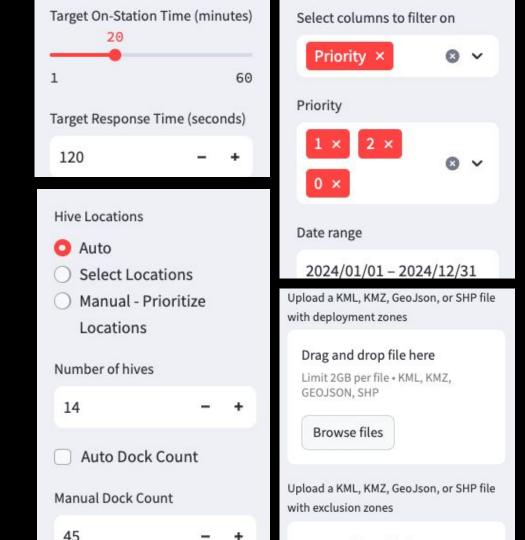
- What is the flight time?
- What is the average cruise speed?
- What is the expected battery life?
- What is the takeoff time?



## All you need are call dates, times, and the location

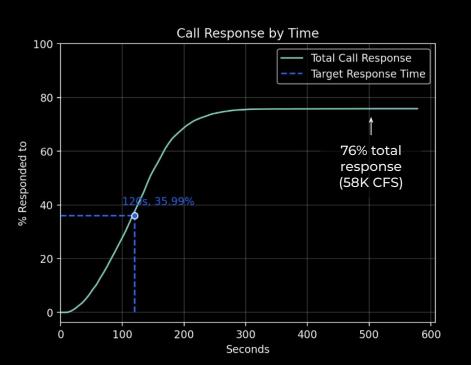


New Orleans gets ~300K calls for service annually.


**All Priorities** 

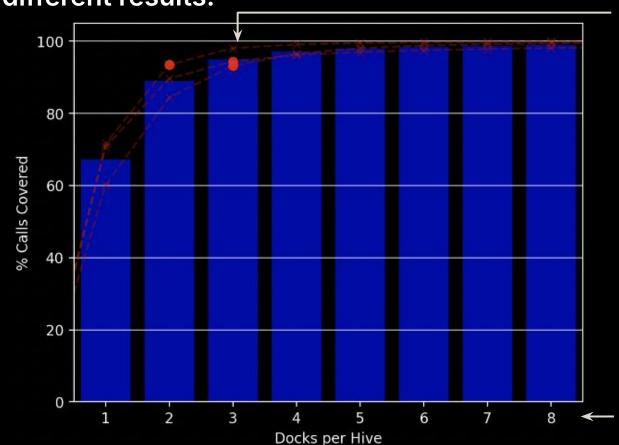
Avoid 0' and 50' Ceilings

X10 with NightSense




# Drive to desired outcomes with different response parameters




#### **Recommended Initial Deployment**

22 Docks in 7 Hives could respond to 27K calls under 120 seconds, which is 36% of P0-2 CFS.





Deployment is scalable; different levels of investment will yield different results.



Simulation optimizes to give the best coverage without leaving you with idle docks

Increasing dock count decreases response times and increases coverage.

#### **Full Deployment**

115 Docks in 35 Hives could respond to 275K calls under 120 seconds, which is 90% of all CFS.





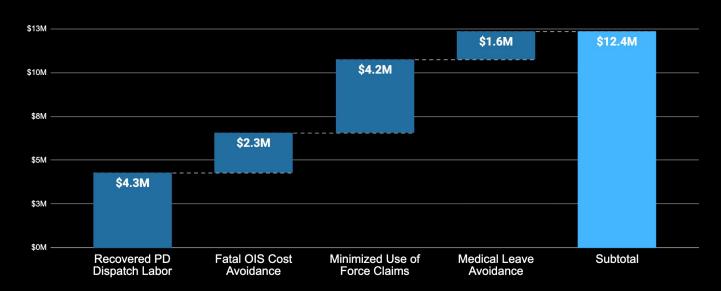


# Using public data & industry benchmarks, we can calculate the expected annual program value.

21%

Of calls can be resolved without sending a patrol officer

50%


UoF Reduction with real-time overwatch information

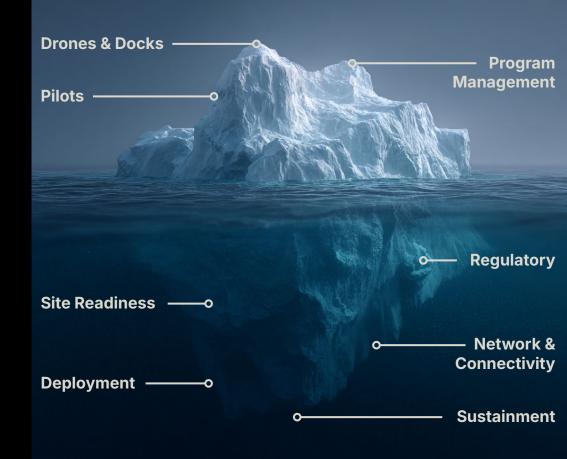
2x

Area coverage for SAR



# Full scale DFR deployment could reduce operating costs by \$12.4M annually



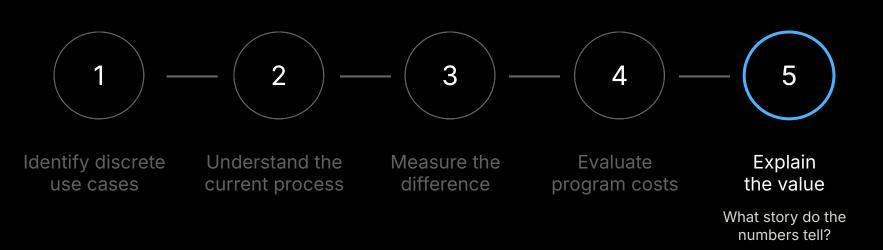







# Buying drones is just the tip of the iceberg

Understanding ongoing operating costs upfront is critical for program success






# Calculating the programmatic ROI allows for strategic planning







How will you measure success?



# Explain the numbers as they relate to program goals



Save lives & increase safety

# officer injuries avoided



Improve response times

Average minutes to arrival



Save money

Redistributed officer hours, UoF claims avoided



Reduce use of force incidents

OIS over time



Improve community relationships

Arrests made, cases closed



Address mental health and wellness

Reduced officer churn



#### Track KPI's for ongoing program calibration



#### SAN FRANCISCO POLICE DEPT

42% reduction in auto theft500+ arrests30% drop in overall crime



#### REDMOND POLICE DEPT

88 sec average response time 48% faster than officers on P1 25% of CFS cleared without patrol



#### **LAKEWOOD POLICE DEPT**

590 flights in 11 weeks47% of CFS received DFR38% of CFS cleared without patrol



#### OKLAHOMA CITY POLICE DEPT

40% flights for fire-related calls